Very Fast Characterization of Focal Mechanism Parameters Through W-Phase Centroid Inversion in the Context of Tsunami Warning

  • Julien RochEmail author
  • Pierre Duperray
  • François Schindelé
Part of the Pageoph Topical Volumes book series (PTV)


Most of the tsunami potential seismic sources in the NEAM region are in a magnitude range of \(6.5 \le M_{w} \le 7.5\) (e.g. the tsunami triggered by the Boumerdes earthquake of 2003 with \(M_{w}=6.9\)). The CENtre d’ALerte aux Tsunamis (CENALT), in operation since 2012 as the French National Tsunami Warning Centre (NTWC) and Candidate Tsunami Service Provider (CTSP), has to issue warning messages within 15 min of earthquake origin time. These warnings are based on the seismic source parameters (\(M_{w}\) magnitude, focal depth and type of fault), which are computed by focal mechanisms and centroid inversion methods. The W-phase method, developed by Kanamori and Rivera, allows quick computation of seismic source parameters due to the early arrival time between P-waves and surface waves, and is therefore particularly useful for monitoring. We assess the W-phase method with 29 events of magnitude \(M_w \ge\) 5.8 for the period 2010–2015 in the NEAM region. Results with 10 min of signal length are in good agreement compared to the Global Centroid Moment Tensor (GCMT) catalog.


Tsunami moment magnitude W-phase moment tensor early warning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alasset, P.-J., Hébert, H., Maouche, S., Calbini, V., and Meghraoui, M. (2006). The tsunami induced by the 2003 Zemmouri earthquake (Mw = 6.9, Algeria): modelling and results. Geophys. J. Int., 166:213–226.Google Scholar
  2. Cummins, P. (1997). Earthquakes near field and Wphase observations at teleseismic distances. Geophys. Res. Lett., 24:2857–2860.CrossRefGoogle Scholar
  3. Duputel, Z., Rivera, L., Kanamori, H., and Hayes, G. (2012). W-phase fast source inversion for moderate to large earthquakes (1990–2010). Geophys. J. Int., 189:1125–1147.Google Scholar
  4. Dziewonski, A. and Anderson, D. (1981). Preliminary Reference Earth Model. Phys. Earth Planet. Inter., 25(4):297–356.CrossRefGoogle Scholar
  5. Ekström, G., Dziewonski, A., Maternovskaya, N., and Nettles, M. (2005). Global seismicity of 2003: Centroid-moment-tensor solutions for 1087 earthquakes. Phys. Earth Planet. Inter., 148:327–351.CrossRefGoogle Scholar
  6. Ekström, G. and Engdahl, E.R. (1989). Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska. J. Geophys. Res., 94:15499–15519.CrossRefGoogle Scholar
  7. Frohlich, C. and Apperson, K. (1992). Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11:279–296.CrossRefGoogle Scholar
  8. Gailler, A., Hébert, H., Loevenbruck, A., and Hernandez, B. (2013). Simulation systems for tsunami wave propagation forecasting within the French tsunami warning center. Nat. Hazards Earth Syst. Sci., 13:2465–2482.CrossRefGoogle Scholar
  9. Hayes, G., Rivera, L., and Kanamori, H. (2009). Source inversion of the W-phase: Real-time implementation and extension to low magnitudes. Seismol. Res. Lett., 80:817–822.CrossRefGoogle Scholar
  10. Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett., 84:1081–1088.CrossRefGoogle Scholar
  11. Kagan, Y.Y. (1991). 3 D rotation of double couple earthquakes source. Geophys. J. Int., 106:709–716.Google Scholar
  12. Kanamori, H. (1993). W phase. Geophys. Res. Lett., 20(16):1691–1694.CrossRefGoogle Scholar
  13. Kanamori, H. and Anderson, D. (1975). Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am., 65:1073–1095.Google Scholar
  14. Kanamori, H. and Rivera, L. (2008). Source inversion of W phase: Speeding up seismic tsunami warning. Geophys. J. Int., 175:222–238.CrossRefGoogle Scholar
  15. Okal, E.A. (1988). Seismic Parameters Controlling Far-Field Tsunami Amplitudes: A review. Natural Hazards, 1:67–96.CrossRefGoogle Scholar
  16. Rivera, L., Kanamori, H. (2014) Diagnosing Source Geometrical Complexity of Large Earthquakes. Pure Appl. Geophys., 171:2819–2840.CrossRefGoogle Scholar
  17. Roger, J., Allgeyer, S., Hébert, H., Baptista, M. A., Loevenbruck, A., and Schindelé, F. (2010). The 1755 Lisbon tsunami in Guadeloupe archipelago: Source sensitivity and investigation of resonance effects. Open Oceanogr. J., 4:58–70.CrossRefGoogle Scholar
  18. Roudil, P., Schindelé, F., Bossu, R., Alabrune, N., Arnoul, P., Duperray, P., Gailler, A., Guilbert, J., Hébert, H., and Loevenbruck, A. (2013). French tsunami warning center for the Mediterranean and Northeast Atlantic—CENALT. Science of Tsunami Hazard, 32(1):1–7.Google Scholar
  19. Sahal, A., Roger, J., Allgeyer, S., Lemaire, B., Hébert, H. Schindelé, F., and Lavigne, F. (2009). The tsunami triggered by the 21 may 2003 Boumerdès-Zemmouri (Algeria) earthquake: field inverstigations on the French Mediterranean coast and tsunami modelling. Nat. Hazards Earth Syst. Sci., 9:1823–1834.CrossRefGoogle Scholar
  20. Schindelé, F., Gailler, A., Hébert, H., Loevenbruck, A., Gutierrez, E., Monnier, A., Roudil, P., Reymond, D., and Rivera, L. (2015). Implementation and challenges of the tsunami warning system in the western Mediterranean. Pure Appl. Geophys., 172:821–833.CrossRefGoogle Scholar
  21. Tinti, S., Armigliato, A., Bortolucci, E., and Piatanesi, A. (1999). Identification of the source fault of the 1908 Messina earthquake through tsunami modelling. is it a possible task? Phys. Chem.Earth B., 24:417–421.CrossRefGoogle Scholar
  22. Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B., and Vergoz, J. (2011). SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution. Geophys. J. Int., 184(1):338–358.CrossRefGoogle Scholar
  23. Weber, B., Becker, J., Hanka, W., Heinloo, A., Hoffmann, M., Kraft, T., Pahlke, D., Reinhardt, J., and Thoms, H. (2007). SeisComP3—automatic and interactive real time data processing. In EGU General Assembly, volume 9.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Julien Roch
    • 1
    Email author
  • Pierre Duperray
    • 1
  • François Schindelé
    • 1
  1. 1.CEA, DAM, DIFArpajonFrance

Personalised recommendations