Advertisement

TaLTaC 3.0. A Multi-level Web Platform for Textual Big Data in the Social Sciences

  • Sergio BolascoEmail author
  • Giovanni De Gasperis
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

The TaLTaC software package as a tool of lexical and textual analysis, versions 1.0 e 2.0, lived over the last decades (1999–2015). It appears now to have met its technological limits. The TaLTaC version 3.0 (from now on T3) has been redesigned to overcome those limits. The process included: (i) recoding of all inner software components with modern web-related languages and standards; (ii) adoption of a new kind of database (NoSQL) capable to handle corpora in the order of magnitude of gigabytes; (iii) new criteria for data storage and data processing. The software architecture is modular and allows to decouple user interaction from actual data computing. The two main components are: the GUI (graphical user interface), based on HTML5/CSS/Js and the back-end processing CORE. The new design also made it possible to run T3 among the mainstream operating systems: Os X, Windows, and Linux. From a single parsing operation, T3 produces many vocabularies for multi-level lexical analysis. This allows one to disambiguate, in a semiautomatic fashion, between the different text graphical forms on the basis of concordance. I also allows for a virtual transformation of simple forms into multi-words.

Keywords

Software engineering Text mining Big data Lexical analysis 

References

  1. Allier, S., Barais, O., Baudry, B., Bourcier, J., Daubert, E., Fleurey, F., et al. (2015). Multitier Diversification in Web-Based Software Applications. IEEE Software, 32(1), 83–90.CrossRefGoogle Scholar
  2. Bolasco, S. (2010). Taltac 2.10 Sviluppi, esperienze ed elementi essenziali di analisi automatica dei testi. Milano: Led.Google Scholar
  3. Bolasco, S., Baiocchi, F., Canzonetti, A., & De Gasperis, G. (2016). TaLTaC 3.0: Un software multi-lessicale e uni-testuale ad architettura web. In D. Mayaffre, C. Poudat, L. Vanni, V. Magri & P. Follette (Eds.), Proceedings of 13th International Conference on Statistical Analysis of Textual Data, University Nice Sophia Antipolis, 225–235.Google Scholar
  4. Bolasco, S. (2013). L’analisi automatica dei testi. Fare ricerca con il text mining. Roma: Carocci.Google Scholar
  5. Escoubas-Benveniste, M. P., Floquet, O., & Bolasco, S. (2012). Contribution empirique à l’étude du gérondif et du participe présent en français parlé et écrit. JADT 2012: 11èmes Journées internationales d’Analyse statistique des Données Textuelles, 473–485.Google Scholar
  6. Lebart, L., & Salem, A. (1988). Analyse statistique des donnes textuelles. Paris: Dunod.Google Scholar
  7. Mayer-Schönberger, V., & Cukier, K. (2013). Big Data A Revolution that will transform how we live, work and think. London: John Murray.Google Scholar
  8. Silberztein, M. (1993). Dictionnaires électroniques et analyse automatique de textes. Le système INTEX. Paris: Masson.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento MEMOTEFUniversità degli Studi di Roma “La Sapienza”RomeItaly
  2. 2.Dipartimento di Ingegneria e Scienze dell’ Informazione e MatematicaUniversità degli Studi dell’ AquilaL’ AquilaItaly

Personalised recommendations