Estimation of Distribution Algorithms for the Firefighter Problem

  • Krzysztof MichalakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10197)


The firefighter problem is a graph-based optimization problem in which the goal is to effectively prevent the spread of a threat in a graph using a limited supply of resources. Recently, metaheuristic approaches to this problem have been proposed, including ant colony optimization and evolutionary algorithms.

In this paper Estimation of Distribution Algorithms (EDAs) are used to solve the FFP. A new EDA is proposed in this paper, based on a model that represents the relationship between the state of the graph and positions that become defended during the simulation of the fire spreading. Another method that is tested in this paper, named EH-PBIL, uses an edge histogram matrix model with the learning mechanism used in the Population-based Incremental Learning (PBIL) algorithm with some modifications introduced in order to make it work better with the FFP. Apart from these two EDAs the paper presents results obtained using two versions of the Mallows model, which is a probabilistic model often used for permutation-based problems. For comparison, results obtained on the same test instances using an Ant Colony Optimization (ACO) algorithm, an Evolutionary Algorithm (EA) and a Variable Neighbourhood Search (VNS) are presented.

The state-position model proposed in this paper works best for graphs with 1000 vertices and more, outperforming the comparison methods. For smaller graphs (with less than 1000 vertices) the VNS works best.


Estimation of distribution algorithms Graph-based optimization Firefighter problem 



Calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (, grant No. 407.


  1. 1.
    Baluja, S.: Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Carnegie Mellon University, Pittsburgh, PA, USA, Technical report (1994)Google Scholar
  2. 2.
    Blum, C., Blesa, M.J., García-Martínez, C., Rodríguez, F.J., Lozano, M.: The firefighter problem: application of hybrid ant colony optimization algorithms. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 218–229. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44320-0_19 Google Scholar
  3. 3.
    Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem. IEEE Trans. Evol. Comput. 18(2), 286–300 (2014)CrossRefGoogle Scholar
  4. 4.
    Ceberio, J., Mendiburu, A., Lozano, J.A.: Introducing the mallows model on estimation of distribution algorithms. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7063, pp. 461–470. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24958-7_54 CrossRefGoogle Scholar
  5. 5.
    Costa, V., Dantas, S., Dourado, M.C., Penso, L., Rautenbach, D.: More fires and more firefighters. Discrete Appl. Math. 161(16–17), 2410–2419 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher. Discrete Appl. Math. 155(17), 2257–2268 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. Australas. J. Comb. 43, 57–77 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fligner, M.A., Verducci, J.S.: Distance based ranking models. J. R. Stat. Soc. 48(3), 359–369 (1986)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Garca-Martnez, C., et al.: The firefighter problem: empirical results on random graphs. Comput. Oper. Res. 60, 55–66 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hartnell, B.: Firefighter! An application of domination. In: 20th Conference on Numerical Mathematics and Computing (1995)Google Scholar
  11. 11.
    Hu, B., Windbichler, A., Raidl, G.R.: A new solution representation for the firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 25–35. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-16468-7_3 Google Scholar
  12. 12.
    Juan, A.A., et al.: A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect. 2, 62–72 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kong, J., Zhang, L., Wang, W.: The surviving rate of digraphs. Discrete Math. 334, 13–19 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lu, T., Boutilier, C.: Learning mallows models with pairwise preferences. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 145–152. ACM (2011)Google Scholar
  15. 15.
    Mallows, C.L.: Non-null ranking models. Biometrika 44(1–2), 114–130 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Meila, M., Chen, H.: Dirichlet process mixtures of generalized mallows models. Uncertainty Artif. Intell. 1(1), 358–367 (2010)Google Scholar
  17. 17.
    Michalak, K.: Auto-adaptation of genetic operators for multi-objective optimization in the firefighter problem. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 484–491. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10840-7_58 Google Scholar
  18. 18.
    Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the multiobjective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 184–196. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-16468-7_16 Google Scholar
  19. 19.
    Michalak, K.: Sim-EDA: a multipopulation estimation of distribution algorithm based on problem similarity. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 235–250. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30698-8_16 CrossRefGoogle Scholar
  20. 20.
    Michalak, K., Knowles, J.D.: Simheuristics for the multiobjective nondeterministic firefighter problem in a time-constrained setting. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 248–265. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31153-1_17 CrossRefGoogle Scholar
  21. 21.
    Tsutsui, S.: Probabilistic model-building genetic algorithms in permutation representation domain using edge histogram. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 224–233. Springer, Heidelberg (2002). doi: 10.1007/3-540-45712-7_22 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Information Technologies, Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland

Personalised recommendations