Skip to main content

Molecular Mechanisms of Chromium-Induced Carcinogenesis

  • Chapter
  • First Online:

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Hexavalent chromium (Cr(VI)) has been utilized for industrial applications for over 200 years. Due to its frequent use, workers in over 80 different industries are exposed to Cr(VI). Epidemiological studies indicate particulate Cr(VI) compounds are the most potent carcinogens, resulting in sinusoid and lung tumors following inhalation. Although Cr(VI) is well established as a human lung carcinogen, the mechanism of carcinogenesis remains unknown. Here, we examine the results of Cr(VI)-induced tumor, in vivo, cell culture, and in vitro studies in the context of three major models of carcinogenesis: multistage carcinogenesis, genomic instability, and epigenetic modification. A wealth of data support the conclusion that genomic instability is a driving mechanism of Cr(VI)-induced carcinogenesis. However, recent studies suggest epigenetic modifications also play a crucial role in its carcinogenic mechanism. Therefore, we propose a mechanism of Cr(VI)-induced carcinogenesis that involves both genomic instability and epigenetic modification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

Adenocarcinoma

Asc:

Ascorbate

BER:

Base excision repair

CLR:

Crosslink repair

Cr:

Chromium

Cr(III):

Trivalent chromium

Cr(VI):

Hexavalent chromium

DNA:

Deoxyribonucleic acid

DSB:

DNA double-strand break

H3K4me3:

Trimethylated histone 3 at lysine 4

H3K9me2:

Dimethylated histone 3 at lysine 9

HR:

Homologous recombination

IF:

Immunofluorescence

miRNA:

MicroRNA

MMR:

Mismatch repair

NHEJ:

Nonhomologous end joining

NSCC:

Non-small cell carcinoma

SCC:

Small cell carcinoma

SqCC:

Squamous cell carcinoma

WB:

Western blot

References

  1. Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ Pollut. 2000;107:263–83.

    Article  CAS  PubMed  Google Scholar 

  2. International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans: chromium, nickel and welding; 1990. Vol. 49.

    Google Scholar 

  3. Agency for Toxic Substances and Disease Registry (ATSDR). A toxicological profile for chromium. U.S. Department of Health and Human Services; 2012.

    Google Scholar 

  4. Barnhart J. Occurrences, uses and properties of chromium. Regul Toxicol Pharmacol. 1997;26:3–7.

    Article  Google Scholar 

  5. Agency for Toxic Substances and Disease Registry (ATSDR). Case studies in environmental medicine: chromium toxicity. U.S. Department of Health and Human Services; 2000. Course SS3048.

    Google Scholar 

  6. Machle W, Gregorius F. Cancer of the respiratory system in the United States chromate-producing industry. Public Health Rep. 1948;63(35):1114–27.

    Article  CAS  PubMed  Google Scholar 

  7. Davies JM. Lung cancer mortality among workers making lead chromate and zinc chromate pigments at three English factories. Br J Ind Med. 1984;41:158–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies JM, Easton DF, Bidstrup PL. Mortality from respiratory cancer and other causes in United Kingdom chromate production workers. Br J Ind Med. 1991;48:299–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gibb HJ, Lees PSJ, Pinsky PF, Rooney BC. Lung cancer among workers in chromium chemical production. Am J Ind Med. 2000;38:115–26.

    Article  CAS  PubMed  Google Scholar 

  10. Gibb HJ, Lees PSJ, Wang J, O’Leary KG. Extended followup of a cohort of chromium production workers. Am J Ind Med. 2015;58:905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langard S, Vigander T. Occurrence of lung cancer in workers producing chromium pigments. Br J Ind Med. 1983;40:71–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishikawa Y, Nakagawa K, Satoh Y, Kitagawa T, Sugano H, Hirano T, et al. Characteristics of chromate workers’ cancers, chromium lung deposition and precancerous bronchial lesions: an autopsy study. Br J Cancer. 1994;70:160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luippold RS, Mundt KA, Austin RP, Liebig E, Panko J, Crump C, et al. Lung cancer mortality among chromate production workers. Occup Environ Med. 2003;60:451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balansky RM, D’Agostini F, Izzotti A, DeFlora S. Less than additive interaction between cigarette smoke and chromium(VI) in inducing clastogenic damage in rodents. Carcinogenesis. 2000;21(9):1677–82.

    Article  CAS  PubMed  Google Scholar 

  15. Levy LS, Venitt S. Carcinogenicity and mutagenicity of chromium compounds: the association between bronchial metaplasia and neoplasia. Carcinogenesis. 1986;7(5):831–5.

    Article  CAS  PubMed  Google Scholar 

  16. Levy LS, Martin PA, Bidstrup PL. Investigation of the potential carcinogenicity of a range of chromium containing materials on rat lung. Br J Ind Med. 1986;43:243–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patierno SR, Banh D, Landolph JR. Transformation of C3H/10T1/2 mouse embryo cells to focus formation and anchorage independence by insoluble lead chromate but not soluble calcium chromate: relationship to mutagenesis and internalization of lead chromate particles. Cancer Res. 1988;48:5280–8.

    CAS  PubMed  Google Scholar 

  18. Stewart II, Olesik JW. Investigation of Cr(III) hydrolytic polymerization products by capillary electrophoresis-inductively coupled plasma-mass spectrometry. J Chromatogr A. 2000;872(1–2):227–46.

    Article  CAS  PubMed  Google Scholar 

  19. Wise JP, Orenstein JM, Patierno SR. Inhibition of lead chromate clastogenesis by ascorbate: relationship to particle dissolution and uptake. Carcinogenesis. 1993;14(3):429–34.

    Article  CAS  PubMed  Google Scholar 

  20. Xie H, Holmes AL, Wise SS, Gordon N, Wise Sr JP. Lead chromate-induced chromosome damage requires extracellular dissolution to liberate chromium ions but does not require particle internalization or intracellular dissolution. Chem Res Toxicol. 2004;17:1362–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hu X, Chai HJ, Liu Y, Liu B, Yang B. Probing chromium(III) from chromium(VI) in cells by a fluorescent sensor. Spectrochim Acta A. 2016;153:505–9.

    Article  CAS  Google Scholar 

  22. Lui KJ, Shi X, Jiang JJ, Goda F, Dalal N, Swartz HM. Chromate-induced chromium(V) formation in live mice and its control by cellular antioxidants: an L-band electron paramagnetic resonance study. Arch Biochem Biophys. 1995;32391:33–9.

    Google Scholar 

  23. Quievryn G, Peterson E, Messer J, Zhitkovich A. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells. Biochemistry. 2003;42:1062–70.

    Article  CAS  PubMed  Google Scholar 

  24. Quievryn G, Messer J, Zhitkovich A. Lower mutagenicity but higher stability of Cr-DNA adducts formed during gradual chromate activation with ascorbate. Carcinogenesis. 2006;27(11):2316–21.

    Article  CAS  PubMed  Google Scholar 

  25. Wong V, Armknecht S, Zhitkovich A. Metabolism of Cr(VI) by ascorbate but not glutathione is a low oxidant-generating process. J Trace Elem Med Biol. 2012;26(2–3):192–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhitkovich A, Quievryn G, Messer J, Motylevich Z. Reductive activation with cysteine represents a chromium(III)-dependent pathway in the induction of genotoxicity by carcinogenic chromium(VI). Environ Health Perspect. 2002;110:729–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhitkovich A. Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol. 2011;24:1617–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leonard SS, Roberts JR, Antonini JM, Castranova V, Shi X. PbCrO4 mediates cellular responses via reactive oxygen species. Mol Cell Biochem. 2004;255:171–9.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Son YO, Chang Q, Sun L, Hitron JA, Budhraja A, et al. NADPH oxidase activation is required in reactive oxygen species generation and cell transformation induced by hexavalent chromium. Toxicol Sci. 2011;123(2):399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Brien T, Mandel G, Pritchard DE, Patierno SR. Critical role of chromium (Cr)-DNA interactions in the formation of Cr-induced polymerase arresting lesions. Biochemistry. 2002;41:12529–37.

    Article  PubMed  CAS  Google Scholar 

  31. Salnikow K, Zhitkovich A, Costa M. Analysis of the binding sites of chromium to DNA and protein in vitro and intact cells. Carcinogenesis. 1992;13(12):2341–6.

    Article  CAS  PubMed  Google Scholar 

  32. Zhitkovich A, Voitkun V, Costa M. Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro: importance of trivalent chromium and the phosphate group. Biochemistry. 1996;35:7275–82.

    Article  CAS  PubMed  Google Scholar 

  33. Donaldson RM, Barreras RF. Intestinal absorption of trace quantities of chromium. J Lab Clin Med. 1966;68:484–93.

    CAS  PubMed  Google Scholar 

  34. Collins BJ, Stout MD, Levine KE, Kissling GE, Melnick RL, Fennell TR, et al. Exposure to hexavalent chromium resulted in significantly higher tissue chromium burden compared to trivalent chromium following similar oral doses to male F344/N rats and female G6C3F1 mice. Toxicol Sci. 2010;118(2):268–79.

    Article  CAS  Google Scholar 

  35. Witt KL, Stout MD, Herbert RA, Travlos GS, Kissling GE, Collins BJ, et al. Mechanistic insights from the NTP studies of chromium. Toxicol Pathol. 2013;41(2):326–42.

    Article  CAS  PubMed  Google Scholar 

  36. Kerger BD, Butler WJ, Paustenbach DJ, Zhang JD, Li SK. Cancer mortality in Chinese populations surrounding an alloy plant with chromium smelting operations. J Toxicol Environ Health A. 2009;72(5):329–44.

    Article  CAS  PubMed  Google Scholar 

  37. Linos A, Petralias A, Christophi CA, Christoforidou E, Kouroutou P, Stoltidis M, et al. Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece – an ecological study. Environ Health. 2011;10(50):1–8.

    Google Scholar 

  38. Sazakli E, Villanueva CM, Kogevinas M, Maltezis K, Mouzaki A, Leotsinidis M. Chromium in drinking water: association with biomarkers of exposure and effect. Int J Environ Res. 2014;11(10):10125–45.

    CAS  Google Scholar 

  39. National Toxicology Program. Technical report on the toxicology and carcinogenesis studies of sodium dichromate dehydrate in F344/N rats and B6C3F1 mice (drinking water studies). National Institutes of Health, U.S. Department of Health and Human Services; 2008.

    Google Scholar 

  40. Ishikawa Y, Nakagawa K, Satoh Y, Kitagawa T, Sugano H, Hirano T, et al. “Hot spots” of chromium accumulation at bifurcations of chromate workers’ bronchi. Cancer Res. 1994;54:2342–6.

    CAS  PubMed  Google Scholar 

  41. Kondo K, Takahashi Y, Ishikawa S, Uchihara H, Hirose Y, Yoshizawa K, et al. Microscopic analysis of chromium accumulation in the bronchi and lung of chromate workers. Cancer. 2003;98(11):2420–9.

    Article  PubMed  Google Scholar 

  42. Ewis AA, Kondo K, Lee J, Tsuyuguchi M, Hashimoto M, Yokose T, et al. Occupational cancer genetics: infrequent ras oncogenes point mutations in lung cancer samples from chromate workers. Am J Ind Med. 2001;40:92–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ewis AA, Kondo K, Dang F, Nakahori Y, Shinohara Y, Ishikawa M, et al. Surfactant protein B gene variations and susceptibility to lung cancer in chromate workers. Am J Ind Med. 2006;49:367–73.

    Article  CAS  PubMed  Google Scholar 

  44. Hirose T, Kondo K, Takahashi Y, Ishikura H, Fujino H, Tsuyuguchi M, et al. Frequent microsatellite instability in lung cancer from chromate-exposed workers. Mol Carcinog. 2002;33:172–80.

    Article  CAS  PubMed  Google Scholar 

  45. Katabami M, Dosaka-Akita H, Mishina T, Honma K, Kimura K, Uchida Y, et al. Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol. 2000;31(8):973–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kondo K, Hino N, Sasa M, Kamamura Y, Sakiyama S, Tsuyuguchi M, et al. Mutations of the p53 gene in human lung cancer from chromate-exposed workers. Biochem Biophys Res Commun. 1997;239:95–100.

    Article  CAS  PubMed  Google Scholar 

  47. Satoh Y, Ishikawa Y, Nakagawa K, Hirano T, Tsuchiya E. A follow-up study of progression from dysplasia to squamous cell carcinoma with immunohistochemical examination of p53 protein overexpression in the bronchi of ex-chromate workers. Br J Cancer. 1997;75(5):678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi Y, Kondo K, Hirose T, Kakagawa H, Tsuyuguchi M, Hashimoto M, et al. Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog. 2005;42:150–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kondo K, Takahashi Y, Hirose Y, Nagao T, Tsuyuguchi M, Hashimoto M. The reduced expression and aberrant methylation of p16INK4a in chromate workers with lung cancer. Lung Cancer. 2006;53:295–302.

    Article  PubMed  Google Scholar 

  50. Halasova E, Adamkov M, Matakova T, Kavcova E, Poliacek I, Singliar A. Lung cancer incidence and survival in chromium exposed individuals with respect to expression of anti-apoptotic protein survivin and tumor suppressor p53 protein. Eur J Med Res. 2010;15:55–9.

    PubMed  PubMed Central  Google Scholar 

  51. Ali AHK, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, et al. Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog. 2011;50:89–99.

    Article  CAS  PubMed  Google Scholar 

  52. Griese M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;13:1455–76.

    Article  CAS  PubMed  Google Scholar 

  53. Ito N, Hasegawa R, Imaida K, , Hirose M, Asamoto M, Shirai T. Concepts in multistage carcinogenesis. Crit Rev Oncol Hemat 1995;21:105–133.

    Article  CAS  Google Scholar 

  54. Cheng L, Sonntag DM, de Boer J, Dixon K. Chromium (VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol. 2000;19(3):239–49.

    CAS  PubMed  Google Scholar 

  55. Zhitkovich A, Song Y, Quievryn G, Voitkun V. Non-oxidative mechanisms are responsible for the induction of mutagenesis by reduction of Cr(VI) with cysteine: role of ternary DNA adducts in Cr(III)-dependent mutagenesis. Biochemistry. 2001;40:549–60.

    Article  CAS  PubMed  Google Scholar 

  56. Klein CB, Su L, Bowser D, Leszczynska J. Chromate induced epimutations in mammalian cells. Environ Health Perspect. 2002;110:739–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reynolds M, Stoddard L, Bespalov I, Zhitkovich A. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 by mismatch repair. Nucleic Acids Res. 2007;35(2):465–76.

    Article  CAS  PubMed  Google Scholar 

  58. Snow ET, Xu LS. Chromium(III) bound to DNA templates promotes increased polymerase processivity and decreased fidelity during replication in vitro. Biochemistry. 1991;30:11238–45.

    Article  CAS  PubMed  Google Scholar 

  59. Yavorsky M, Almaden P, King CG. The vitamin C content of human tissues. J Biol Chem. 1934;106:525–9.

    CAS  Google Scholar 

  60. Shen Z. Genomic instability and cancer: an introduction. J Mol Cell Biol. 2011;3:1–3.

    Article  CAS  PubMed  Google Scholar 

  61. Karran P. Microsatellite instability and DNA mismatch repair in human cancer. Semin Cancer Biol. 1996;7:15–24.

    Article  CAS  PubMed  Google Scholar 

  62. de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol. 2010;28(20):3380–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Peterson-Roth E, Reynolds M, Quievryn G, Zhitkovich A. Mismatch repair proteins are activators of toxic responses to chromium-DNA damage. Mol Cell Biol. 2005;25(9):3596–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reynolds MF, Peterson-Roth EC, Bespalov IA, , Johnston T, Gurel VM, Menard HL, et al. Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers. Cancer Res 2009;69(3):1071–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zecevic A, Menard H, Gurel V, Hagan E, DeCaro R, Zhitkovich A. WRN helicase promotes repair of DNA double-strand breaks caused by aberrant mismatch repair of chromium-DNA adducts. Cell Cycle. 2009;8(17):2769–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu J, Gu L, Wang H, , Geacintov NE, Li G. Mismatch repair processing of carcinogen-DNA adducts triggers apoptosis. Mol Cell Biol 1999;19(12):8292–8301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wozniak K, Blasiak J. Recognition and repair of DNA-cisplatin adducts. Acta Biochim Pol. 2002;49(3):583–96.

    CAS  PubMed  Google Scholar 

  68. Albertson DG, Collins C, McCormick F, , Gray JW. Chromosome aberrations in solid tumors. Nat Genet 2003;34(4):369–376.

    Article  CAS  PubMed  Google Scholar 

  69. Guerci A, Seoane A, Dulout FN. Aneugenic effects of some metal compounds assessed by chromosome counting in MRC-5 human cells. Mutat Res. 2000;469:35–40.

    Article  CAS  PubMed  Google Scholar 

  70. Seoane AI, Guerci AM, Dulout FN. Malsegregation as a possible mechanism of aneuploidy induction by metal salts in MRC-5 human cells. Environ Mol Mutagen. 2002;40:200–6.

    Article  CAS  PubMed  Google Scholar 

  71. Wise SS, Holmes AL, Xie H, Thompson WD, Wise Sr JP. Chronic exposure to particulate chromate induces spindle assembly checkpoint bypass in human lung cells. Chem Res Toxicol. 2006;19:1492–8.

    Article  CAS  PubMed  Google Scholar 

  72. Holmes AL, Wise SS, Sandwick SJ, Lingle WL, Negron VC, Thompson WD, et al. Chronic exposure to lead chromate causes centrosomes abnormalities and aneuploidy in human lung cells. Cancer Res. 2006;66(8):4041–8.

    Article  CAS  PubMed  Google Scholar 

  73. Rodrigues CFD, Urbano AM, Matoso E, Carreira I, Almeida A, Santos P, et al. Human bronchial epithelial cells malignantly transformed by hexavalent chromium exhibit an aneuploid phenotype but no microsatellite instability. Mutat Res. 2009;670:42–52.

    Article  CAS  PubMed  Google Scholar 

  74. Holmes AL, Wise SS, Pelsue SC, Aboueissa AE, Lingle W, Salisbury J, et al. Chronic exposure to zinc chromate induces centrosomes amplification and spindle assembly checkpoint bypass in human lung fibroblasts. Chem Res Toxicol. 2010;23(2):386–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martino J, Holmes AL, Xie H, Wise SS, Wise Sr JP. Chronic exposure to particulate chromate induces premature centrosomes separation and centriole disengagement in human lung cells. Toxicol Sci. 2015;147(2):490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wise SS, Holmes AL, Liou L, Adam RM, Wise Sr JP. Hexavalent chromium induces chromosome instability in human urothelial cells. Toxicol Appl Pharmcol. 2016;296:54–60.

    Article  CAS  Google Scholar 

  77. Masuda A, Takahashi T. Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene. 2002;21:6884–97.

    Article  CAS  PubMed  Google Scholar 

  78. Maeng SH, Chung HW, Kim KJ, Lee BM, Shin YC, Kim SJ, et al. Chromosome aberration and lipid peroxidation in chromium-exposed workers. Biomarkers. 2004;9(6):418–34.

    Article  CAS  PubMed  Google Scholar 

  79. Halasova E, Matakova T, Musak L, Polakova V, Vodicka P. Chromosomal damage and polymorphisms of DNA repair genes XRCC1 and XRCC3 in workers exposed to chromium. Neuroendocrinol Lett. 2008;29(5):101–5.

    Google Scholar 

  80. Halasova E, Matakova T, Musak L, Polakova V, Letkova L, Dobroata D, et al. Evaluating chromosomal damage in workers exposed to hexavalent chromium and the modulating role of polymorphisms of DNA repair genes. Int Arch Occup Environ Health. 2012;85:473–81.

    Article  CAS  PubMed  Google Scholar 

  81. Wise Sr JP, Wise SS, Little JE. The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res. 2002;517:221–9.

    Article  CAS  PubMed  Google Scholar 

  82. Wise SS, Schuler JHC, Katsifis SP, Wise Sr JP. Barium chromate is cytotoxic and genotoxic to human lung cells. Environ Mol Mutagen. 2003;42:274–8.

    Article  CAS  PubMed  Google Scholar 

  83. Wise SS, Elmore LW, Holt SE, , Little JE, Antonucci PG, Bryant BH, et al. Telomerase-mediated lifespan extension of human bronchial cells does not affect hexavalent chromium-induced cytotoxicity or genotoxicity. Mol Cell Biochem 2004;255:103–111.

    Article  CAS  PubMed  Google Scholar 

  84. Wise SS, Holmes AL, Ketterer ME, Hartsock WJ, Fomchenko E, Katsifis S, et al. Chromium is the proximate clastogenic species for lead chromate-induced clastogenicity in human bronchial cells. Mutat Res. 2004;560:79–89.

    Article  CAS  PubMed  Google Scholar 

  85. Wise SS, Schuler JHC, Holmes AL, Katsifis SP, Ketterer ME, Hartsock WJ, et al. Comparison of two particulate hexavalent chromium compounds: barium chromate is more genotoxic than lead chromate in human lung cells. Environ Mol Mutagen. 2004;44:156–62.

    Article  CAS  PubMed  Google Scholar 

  86. Xie H, Wise SS, Holmes AL, Xu B, Wakeman TP, Pelsue SC, et al. Carcinogenic lead chromate induces DNA double-strand breaks in human lung cells. Mutat Res. 2005;586:160–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Holmes AL, Wise SS, Sandwick SJ, Wise Sr JP. The clastogenic effects of chronic exposure to particulate and soluble Cr(VI) in human lung cells. Mutat Res. 2006;610:8–13.

    Article  CAS  PubMed  Google Scholar 

  88. Wise SS, Holmes AL, Wise Sr JP. Particulate and soluble hexavalent chromium are cytotoxic and genotoxic to human lung epithelial cells. Mutat Res. 2006;610:2–7.

    Article  CAS  PubMed  Google Scholar 

  89. Xie H, Holmes AL, Young JL, Qin Q, Joyce K, Pelsue SC. Zinc chromate induces chromosome instability and DNA double strand breaks in human lung cells. Toxicol Appl Pharmacol 2009;234:293–299.

    Article  CAS  PubMed  Google Scholar 

  90. Wise SS, Holmes AL, Qin Q, Xie H, Katsifis SP, Thompson WD, et al. Comparative genotoxicity and cytotoxicity of four hexavalent chromium compounds in human bronchial cells. Chem Res Toxicol. 2010;23:365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qin Q, Xie H, Wise SS, Browning CL, Thompson KN, Holmes AL, et al. Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells. Toxicol Sci. 2015;142(1):117–25.

    Google Scholar 

  92. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem.2000;275(13):9390–5.

    Google Scholar 

  93. Xie H, Holmes AL, Wise SS, , Young JL, Wise JTF, Wise Sr JP. Human skin cells are more sensitive than human lung cells to the cytotoxic and cell cycle arresting impacts of particulate and soluble hexavalent chromium. Biol Trace Elem Res 2015;166:49–56.

    Google Scholar 

  94. Ha L, Ceryak S, Patierno SR. Generation of S phase-dependent DNA double-strand breaks by Cr(VI) exposure: involvement of ATM in Cr(VI) induction of γ-H2AX. Carcinogenesis. 2004;25(11):2265–74.

    Article  CAS  PubMed  Google Scholar 

  95. Wakeman TP, Kim WJ, Callens S, Chiu A, Brown KD, Xu B. The ATM-SMC1 pathway is essential for activation of the chromium[VI]-induced S-phase checkpoint. Mutat Res. 2004;554:241–51.

    Article  CAS  PubMed  Google Scholar 

  96. Xie H, Wise SS, Wise Sr JP. Deficient repair of particulate hexavalent chromium-induced DNA double strand breaks leads to neoplastic transformation. Mutat Res. 2008;649(1–2):230–8.

    Article  CAS  PubMed  Google Scholar 

  97. DeLoughery Z, Luczak MW, Ortega-Atienza S, Zhitkovich A. DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination. Toxicol Sci. 2015;143(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  98. Bryant HE, Ying S, Helleday T. Homologous recombination is involved in repair of chromium-induced DNA damage in mammalian cells. Mutat Res. 2006;599:116–23.

    Article  CAS  PubMed  Google Scholar 

  99. Camyre E, Wise SS, Milligan P, Gordon N, Goodale B, Stackpole M, et al. Ku80 deficiency does not affect particulate chromate-induced chromosome damage and cytotoxicity in Chinese hamster ovary cells. Toxicol Sci. 2007;97(2):348–54.

    Article  CAS  PubMed  Google Scholar 

  100. Stackpole MM, Wise SS, Grlickova Duzevik E, Munroe RC, Thompson WD, Thacker J, et al. Homologous recombination repair protects against particulate chromate induced chromosome instability in Chinese hamster cells. Mutat Res. 2007;625(1–2):145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tamblyn L, Li E, Sarras H, , Srikanth P, Hande MP, McPherson JP. A role for Mus81 in the repair of chromium-induced DNA damage. Mutat Res 2009;660:57–65.

    Article  CAS  PubMed  Google Scholar 

  102. Kikuchi K, Narita T, Van PT, Iijima J, Hirota K, Keka IS, et al. Structure-specific endonucleases Xpf and Mus81 play overlapping but essential roles in DNA repair by homologous recombination. Cancer Res. 2013;73(14):4362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res. 2012;2(3):249–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mitsuuchi Y, Testa JR. Cytogenetics and molecular genetics of lung cancer. Am J Med Genet. 2002;115:183–8.

    Article  PubMed  Google Scholar 

  105. Qian Y, Jiang BH, Flynn DC, , Leonard SS, Wang S, Zhang Z, et al. Cr(VI) increases tyrosine phosphorylation through reactive oxygen species-mediated reactions. Mol Cell Biochem 2001;222:199–204.

    Article  CAS  PubMed  Google Scholar 

  106. Wei YD, Tepperman K, Huang M, Sartor MA, Puga A. Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem. 2004;279(6):4110–9.

    Article  CAS  PubMed  Google Scholar 

  107. Vasant C, Sankaramanivel S, Jana M, Rajaram R, Ramasami T. Non-enzymatic phosphorylation of bovine serum albumin by Cr(V) complexes: role in Cr(VI)-induced phosphorylation and toxicity. Mol Cell Biochem. 2005;275:153–64.

    Article  CAS  PubMed  Google Scholar 

  108. Schnekenburger M, Talaska G, Puga A. Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol. 2007;27(20):7089–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun H, Zhou X, Chen H, Costa M. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol. 2009;237(3):258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou X, Li Q, Arita A, , Sun H, Costa M. Effects of nickel, chromate and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 2009;236(1):78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xia B, Yang L, Huang H, , Pang L, Hu G, Liu Q, et al. Chromium(VI) causes down regulation of biotinidase in human bronchial epithelial cells by modifications of histone acetylation. Toxicol Lett 2011;205:140–145.

    Article  CAS  PubMed  Google Scholar 

  112. He J, Qian X, Carpenter R, Xu Q, Wang L, Qi Y, et al. Repression of miR-143 mediates Cr(VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway. Toxicol Sci. 2013;134(1):26–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xia B, Ren X, Zhuang Z, Yang L, Huang H, Pang L, et al. Effect of hexavalent chromium on histone biotinylation in human bronchial epithelial cells. Toxicol Lett. 2014;228:241–7.

    Article  CAS  PubMed  Google Scholar 

  114. Chandra S, Pandey A, Chowdhuri DK. miRNA profiling provides insights on adverse effects of Cr(VI) in the midgut tissues of Drosophila melanogaster. J Hazard Mater. 2015;283:558–67.

    Article  CAS  PubMed  Google Scholar 

  115. Chandra S, Khatoon R, Pandey A, Saini S, Vimal D, Singh P, et al. dme-miR-314-3p modulation in Cr(VI) exposed Drosophila affects DNA damage repair by targeting mus309. J Hazard Mater. 2016;304:360–9.

    Article  CAS  PubMed  Google Scholar 

  116. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  117. Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr. 2009;21:243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li Y, Li P, Yu S, , Zhang J, Wang T, Jia GmiR-3940-5p associated with genetic damage in workers exposed to hexavalent chromium. Toxicol Lett. 2014;229:319–326.

    Article  CAS  PubMed  Google Scholar 

  119. Izzotti A, Cartiglia C, Balansky R, D’Agostini F, Longobardi M, De Flora S. Selective induction of gene expression in rat lung by hexavalent chromium. Mol Carcinog. 2002;35:75–84.

    Article  CAS  PubMed  Google Scholar 

  120. Banu SK, Stanley JA, Lee J, Stephen SD, Arosh JA, Hoyer PA, et al. Hexavalent chromium-induced apoptosis of granulose cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53. Toxicol Appl Pharm. 2011;251(3):253–66.

    Article  CAS  Google Scholar 

  121. Chuang SM, Yang JL. Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells. Mol Cell Biochem. 2001;222:85–95.

    Article  CAS  PubMed  Google Scholar 

  122. Chuang SM, Liou GY, Yang JL. Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis. 2000;21(8):1491–500.

    Article  CAS  PubMed  Google Scholar 

  123. Hodges NJ, Smart D, Lee AJ, Lewis NA, Chipman JK. Activation of c-Jun N-terminal kinase in A549 lung carcinoma cells by sodium dichromate: role of dissociation of apoptosis signal regulating kinase-1 from its physiological inhibitor thioredoxin. Toxicology. 2004;197:101–12.

    Article  CAS  PubMed  Google Scholar 

  124. Tessier DM, Pascal LE. Activation of MAP kinase by hexavalent chromium, manganese and nickel in human lung epithelial cells. Toxicol Lett. 2006;167:114–21.

    Article  CAS  PubMed  Google Scholar 

  125. DeFlora S. Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis. 2000;21(4):533–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Environmental Health Sciences [ES016893 to J.P.W] and the National Aeronautics and Space Administration (NASA) [ACD FSB-2009 to J.P.W].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Pierce Wise Sr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Browning, C.L., Speer, R.M., Wise, J.P. (2017). Molecular Mechanisms of Chromium-Induced Carcinogenesis. In: Mudipalli, A., Zelikoff, J. (eds) Essential and Non-essential Metals. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55448-8_7

Download citation

Publish with us

Policies and ethics