Skip to main content

The Modelling of Fibre Lasers for Mid-Infrared Wavelengths

  • Chapter
  • First Online:
Recent Trends in Computational Photonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 204))

Abstract

This chapter describes numerical investigations of some of the possibilities for obtaining mid-infrared laser action in rare earth doped chalcogenide glass fibres, starting from some basic laser physics and progressing through the development of numerical fibre laser models and the experimental techniques for extracting modelling parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ebrahim-Zadeh, I.T. Sorokina (eds.), Mid-infrared coherent sources and applications, NATO Science for Peace and Security, Series B: Physics and Biophysics (Springer, The Netherlands, 2008)

    Google Scholar 

  2. http://www.rp-photonics.com/highpowerfiberlasers.pdf

  3. Y. Ma, R. Lewicki, M. Razeghi, F.K. Tittel, QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express 21, 1008 (2013)

    Article  ADS  Google Scholar 

  4. B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, Le, H., Gmachl, C., Sivco D., Peabody M., Cho A. Laser-based mid-infrared reflectance imaging of biological tissues. Opt. Express 12, 208 (2004)

    Google Scholar 

  5. S. Jackson, Towards high-power mid-infrared emission from a fibre laser, Nat. Photon. 6, 423 (2012)

    Google Scholar 

  6. A.B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T.M. Benson, Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express 18, 26704 (2010)

    Article  ADS  Google Scholar 

  7. L.B. Shaw, B. Cole, P.A. Thielen, J.S. Sanghera, I.D. Aggrawal, Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. IEEE J. Quant. Electron. 37, 1127 (2001)

    Article  ADS  Google Scholar 

  8. J. Schneider, C. Carbonnier, U.B. Unrau, Characterization of a Ho\(^{3+}\)-doped fluoride fiber laser with a 3.9-\(\mu \)m emission wavelength. Appl. Opt. 36, 8595 (1997)

    Article  ADS  Google Scholar 

  9. H. Tobben, Room temperature cw fibre laser at 3.5 \(\mu \)m in Er\(^{3+}\)-doped ZBLAN glass. Electron. Lett. 28, 1361 (1992)

    Article  ADS  Google Scholar 

  10. C. Gautam, A.K. Yadav, A. K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives, ISRN Ceram. 2012, 17 (2012)

    Google Scholar 

  11. J.S. Sanghera, L.B. Shaw, L.E. Busse, V.Q. Nguyen, P.C. Pureza, B.C. Cole, B.B. Harrison, I.D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, R. Miklos, Development and infrared applications of chalcogenide glass optical fibers, Fiber Integr. Opt. 19, 251 (2000)

    Google Scholar 

  12. C. Carbonnier, H. Tbben, U.B. Unrau, Room temperature CW fibre laser at 3.22 \(\mu \)m. Electron. Lett. 34, 893 (1998)

    Article  Google Scholar 

  13. J.F. Li, D.D. Hudson, S.D. Jackson, High-power diode-pumped fiber laser operating at 3 \(\mu \)m. Opt. Lett. 36, 3642 (2011)

    Article  ADS  Google Scholar 

  14. O. Henderson-Sapir, J. Munch, D. Ottaway, Mid-infrared fiber lasers at and beyond 3.5 \(\mu \)m using dual-wavelength pumping. Opt. Lett. 39, 493 (2014)

    Article  ADS  Google Scholar 

  15. A. Berrou, C. Kieleck, M. Eichhorn, Mid-infrared lasing from Ho\(^{3+}\) in bulk InF3 glass. Opt. Lett. 40, 1699 (2015)

    Article  ADS  Google Scholar 

  16. R.S. Quimby, Photonics and Lasers: An Introduction (Wiley, New York, 2006)

    Book  Google Scholar 

  17. B.E.A. Saleh, M.C. Teich, Photons and Atoms, in Fundamentals of Photonics (Wiley, New York, 2001)

    Google Scholar 

  18. P.C. Becker, N.A. Olsson, J.R. Simpson, Erbium-doped fiber amplifiers-amplifier basics, Erbium-Doped Fiber Amplifiers (Academic Press, San Diego, 1999), pp. 131–152

    Chapter  Google Scholar 

  19. M.J.F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd edn. (Academic Press, CRC Press, Boca Raton, 2001)

    Google Scholar 

  20. Z. Burshtein, Radiative, nonradiative, and mixed-decay transitions of rare-earth ions in dielectric media Opt. Eng. 49, 091005 (2010)

    Google Scholar 

  21. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, Cambridge, 2001)

    MATH  Google Scholar 

  22. G.P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 2002)

    Book  Google Scholar 

  23. E. Snitzer, Proposed fiber cavities for optical masers. J. Appl. Phys. 23, 36 (1961)

    Article  ADS  Google Scholar 

  24. C.J. Koester, E. Snitzer, Amplification in a fiber laser. Appl. Opt. 3, 1182 (1964)

    Article  ADS  Google Scholar 

  25. Y. Jeong, J. Sahu, D. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 12, 6088 (2004)

    Article  ADS  Google Scholar 

  26. R.J. Mears, L. Reekie, M. Jauncey, D.N. Payne, Neodymium-doped silica single-mode fibre lasers. Electron. Lett. 26, 1026 (1987)

    Article  Google Scholar 

  27. E. Snitzer, Optical maser action of Nd\(^{3+}\) in a barium crown glass. Phys. Rev. Lett. 7, 444 (1961)

    Article  ADS  Google Scholar 

  28. J. Stone, C.A. Burrus, Neodymium-doped fiber fasers: room temperature cw operation with an injection laser pump. Appl. Opt. 13, 41256 (1974)

    Article  ADS  Google Scholar 

  29. W.L. Barnes, W.J. Barnes, S.B. Poole, J.E. Townsend, L. Reekie, D.J. Taylor, D.N. Payne, Er\(^{3+}\)-Yb\(^{3+}\) and Er\(^{3+}\) doped fiber lasers. J. Lightwave Technol. 7, 1461 (1989)

    Article  ADS  Google Scholar 

  30. B.C. Dickinson, P.S. Golding, M. Pollnau, T.A. King, S.D. Jackson, Investigation of a 791-nm pulsed-pumped 2.7-\(\mu \)m Er-doped ZBLAN fibre laser. Opt. Commun. 191, 315 (2001)

    Article  ADS  Google Scholar 

  31. D.J. Richardson, J. Nilsson, W.A. Clarkson, High power fiber lasers: current status and future perspectives [Invited]. J. Opt. Soc. Am. B 27, B63 (2010)

    Article  Google Scholar 

  32. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P.S. Yeh, E. Zucker, 110 W fibre laser. Electron. Lett. 35, 1158 (1999)

    Article  Google Scholar 

  33. A. Tnnermann, T. Schreiber, Limpert."Fiber lasers and amplifiers: an ultrafast performance evolution". J Appl. Opt. 49, F71 (2010)

    Article  Google Scholar 

  34. E. Snitzer, R. Woodcock, J. Segre, Phosphate glass Er\(^{3+}\) laser IEEE. J. Quantum Electron. 4, 360 (1968)

    Article  ADS  Google Scholar 

  35. R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33, 1049 (1997)

    Article  ADS  Google Scholar 

  36. S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, Z. Yang, Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm. Opt. Lett. 38, 501 (2013)

    Article  ADS  Google Scholar 

  37. H. Scheife, G. Huber, E. Heumann, S. Bar, E. Osiac, Advances in up-conversion lasers based on Er\(^{3+}\) and Pr\(^{3+}\). Opt. Mater. 26, 365 (2004)

    Google Scholar 

  38. S.D. Jackson, M. Pollnau, Li,"Diode pumped erbium cascade fiber lasers". IEEE J. Quantum Electron. 47, 471 (2011)

    Article  ADS  Google Scholar 

  39. W.J. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500 nm. IEEE J. Lightwave Technol. 9, 234 (1991)

    Article  ADS  Google Scholar 

  40. L. Li, A. Schlzgen, V.L. Temyanko, T. Qiu, M.M. Morrell, Q. Wang, A. Mafi, J.V. Moloney, N. Peyghambarian, Short-length microstructured phosphate glass fiber lasers with large mode areas. Opt. Lett. 30, 1141 (2005)

    Article  ADS  Google Scholar 

  41. L. Yan, C.H. Lee, Thermal effects in end-pumped Nd: phosphate glasses. J. Appl. Phys. 75, 1286 (1994)

    Article  ADS  Google Scholar 

  42. S. Hollitt, N. Nikita, A. Hemming, J. Haub, A. Carter, A linearly polarised, pulsed Ho-doped fiber laser. Opt. Express 20, 16285 (2012)

    Article  ADS  Google Scholar 

  43. R. Paschotta, P.R. Barber, A.C. Tropper, D.C. Hanna, Characterization and modeling of thulium: ZBLAN blue upconversion fiber lasers. J. Opt. Soc. Am. B 14, 1213 (1997)

    Article  ADS  Google Scholar 

  44. P.F. Moulton, G.A. Rines, E.V. Slobodtchikov, K.F. Wall, G. Frith, B. Samson, A.L.G. Carter, Tm-Doped Fiber Lasers: Fundamentals and power scaling. IEEE J. Sel. Top. Quantum Electron. 15, 1585 (2009)

    Article  Google Scholar 

  45. J. Wu, Z. Yao, J. Zong, S. Jiang, Highly efficient high-power thulium-doped germanate glass fiber laser. Opt. Lett. 32, 638 (2007)

    Article  ADS  Google Scholar 

  46. H. Zellmer, K. Plamann, G. Huber, H. Scheife, A. Tunnermann, Visible double-clad upconversion fibre laser. Electron. Lett. 34, 565 (1998)

    Article  Google Scholar 

  47. R.G. Smart, D.C. Hanna, A.C. Tropper, S.T. Davey, S.F. Carter, D. Szebesta, A 20 dB gain thulium-doped fluorozirconate fibre amplifier operating at around 0.8 \(\mu \)m. Electron. Lett. 27, 1307 (1991)

    Article  ADS  Google Scholar 

  48. https://www.rp-photonics.com/midinfraredlasersources

  49. J.S. Sanghera, L.B. Shaw, P. Pureza, V.Q. Nguyen, D. Gibson, L. Busse, I.D. Aggarwal, C.M. Florea, F.H. Kung, Nonlinear properties of chalcogenide glass fibers. Int. J. Appl. Glass Sci. 1, 296 (2010)

    Article  Google Scholar 

  50. G. Tao, H. Ebendorff-Heidepriem, A.M. Stolyarov, S. Danto, J.V. Badding, Y. Fink, J. Ballato, A.F. Abouraddy, Infrared fibers. Adv. Opt. Photon. 7, 379 (2015)

    Article  Google Scholar 

  51. A. Jha, B.D.O. Richards, G. Jose, T.T. Fernandez, C.J. Hill, J. Lousteau, P. Joshi, Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications. Int. Mater. Rev. 57, 357 (2012)

    Article  Google Scholar 

  52. K. Kadono, J. Ceram. Soc. Jpn. 115, 297 (2007)

    Article  Google Scholar 

  53. G.E. Snopatin, V.S. Shiryaev, V.G. Plotnichenka, E.M. Dianov, High-purity chalcogenide glasses for fiber optics. Inorg. Mater. 45, 1439 (2009)

    Article  Google Scholar 

  54. Z. Tang, N.C. Neate, D. Furniss, S. Sujecki, T.M. Benson, A.B. Seddon, Crystallisation behavior of Dy3+-doped selenide glasses. J. Non-Cryst. Solids 357, 2453 (2011)

    Article  ADS  Google Scholar 

  55. Z. Tang, V.S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T.M. Benson, A.B. Seddon, M.F. Churbanov, Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics, Opt. Mater. Express 5, 1722 (2015)

    Google Scholar 

  56. T. Schweizer, B.N. Samson, R.C. Moore, D.W. Hewak, D.N. Payne, Rare-earth doped chalcogenide glass fibre laser. Electron. Lett. 33, 414 (1997)

    Article  Google Scholar 

  57. S. Cui, R. Chahal, C. Boussard-Pledel, V. Nazabal, J.-L. Doualan, J. Troles, J. Lucas, B. Bureau, From selenium- to tellurium-based glass optical fibers for infrared spectroscopies. Molecules 18, 5373 (2013)

    Article  Google Scholar 

  58. Y.S. Han, J. Heo, Midinfrared emission properties of Pr\(^{3+}\) doped chalcogenide glasses at cryogenic temperature. J. Appl. Phys. 93, 8970 (2003)

    Article  ADS  Google Scholar 

  59. F. Charpentier, F. Starecki, J.L. Doualan, P. Jvri, P. Camy, J. Troles, S. Belin, B. Bureau, V. Nazabal, Mid-IR luminescence of Dy\(^{3+}\) and Pr\(^{3+}\) doped Ga\(_5\)Ge\(_{20}\)Sb\(_{10}\)S(Se)\(_{65}\) bulk glasses and fibers. Mater. Lett. 101, 21 (2013)

    Article  Google Scholar 

  60. B. Cole, L.B. Shaw, P.C. Pureza, R. Mossadegh, J.S. Sanghera, I.D. Aggarwal, Rare earth doped selenide glass fibers. J. Non-Cryst. Solids 256, 253 (1999)

    Article  ADS  Google Scholar 

  61. L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Beres-Pawlik, H. Dantanarayana, E. Faber, A.B. Seddon, T. M. Benson, S. Sujecki, Broadband, mid-infrared emission from Pr\(^{3+}\) doped GeAsGaSe chalcogenide fiber, optically clad, Opt. Mater. 36, 1076 (2014)

    Google Scholar 

  62. B.J. Park, H.S. Seo, J.T. Ahn, Y.G. Choi, D.Y. Jeon, W.J. Chung, Mid-infrared (3.5–5.5 \(\mu \)m) spectroscopic properties of Pr\(^{3+}\)-doped GeGaSbSe glasses and optical fibers. J. Lumin. 128, 1617 (2008)

    Article  Google Scholar 

  63. M. Ichikawa, Y. Ishikawa, T. Wakasugi, K. Kadono, Mid-infrared emissions from Ho\(^{3+}\) in Ga\(_2\)S\(_3\)-GeS\(_2\)-Sb\(_2\)S\(_3\) glass. J. Lumin. 132, 784 (2012)

    Article  Google Scholar 

  64. T. Schweizer, B.N. Samsonv, J.R. Hector, W.S. Brocklesby, D.W. Hewak, D.N. Payne, Infrared emission from holmium doped gallium lanthanum sulphide glass, Infrared Phys. Technol. 40, 329 (1999)

    Google Scholar 

  65. T. Schweizer, D.W. Hewak, B.N. Samson, D.N. Payne, Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass. J. Lumin. 72, 419 (1997)

    Article  Google Scholar 

  66. J. Heo, B.S. Yong, Absorption and mid-infrared emission spectroscopy of Dy\(^{3+}\) in Ge-As(or Ga)-S glasses. J. Non-Cryst. Solids. 196, 162 (1996)

    Article  ADS  Google Scholar 

  67. B.J. Park, H S. Seo, J.T. Ahn, Y.G. Choi, J. Heo, W.J. Chung, Dy\(^{3+}\) doped Ge-Ga-Sb-Se glasses and optical fibers for the mid-IR gain media, Ceram. Soc. Jpn. 116, 1087(2008)

    Google Scholar 

  68. M.F. Churbanov, I.V. Scripachev, V.S. Shiryaev, V.G. Plotnichenko, S.V. Smetanin, E.B. Kryukova, Y.N. Pyrkov, B.I. Galagan, Chalcogenide glasses doped with Tb, Dy, and Pr ions. J. Non-Cryst. Solids 326, 301 (2003)

    Article  ADS  Google Scholar 

  69. T. Schweizer, B.N. Samson, J.H. Hector, W.S. Brocklesby, D.W. Hewak, D.N. Payne, Infrared emission and ionion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass. J. Opt. Soc. Am. B 16, 308 (1999)

    Article  ADS  Google Scholar 

  70. I.D. Aggarwal, J.S. Sanghera, Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mat 4, 665 (2002)

    Google Scholar 

  71. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J-L. Adam, J-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, G. Canat, Er\(^{3+}\)-Doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy, Opt. Mater. 31, 39 (2008)

    Google Scholar 

  72. T. Schweizer, D. Brady, D.W. Hewak, Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications. Opt. Express 1, 102 (1997)

    Article  ADS  Google Scholar 

  73. D. Shixun, P. Bo, Z. Pengjun, X. Tiefeng, X. Wang, N. Qiuhua, Z. Xianghua, The near- and mid-infrared emission properties of Tm\(^{3+}\)-doped GeGaS-CsI chalcogenide glasses. J. Non-Cryst. Solids 356, 2424 (2010)

    Google Scholar 

  74. G.H. Dieke, H.M. Crosswhite, The spectra of the doubly and triply ionized rare earths. Appl. Opt. 2, 675 (1963)

    Article  ADS  Google Scholar 

  75. E. Yahel, O. Hess, A.A. Hardy, Modeling and optimization of high-power Nd\(^{3+}-\)Yb\(^{3+}\) codoped fiber lasers. IEEE J. Lightwave Technol. 24, 1601 (2006)

    Google Scholar 

  76. C.R. Giles, E. Desurvire, Modeling erbium-doped fiber amplifiers. IEEE J. Lightwave Technol. 9, 271 (1991)

    Article  ADS  Google Scholar 

  77. G.C. Valley, Modeling cladding-pumped Er/Yb fiber amplifiers. Opt. Fiber Technol. 7, 21 (2001)

    Article  ADS  Google Scholar 

  78. S. Sujecki, Photonics Modelling and Design (CRC Press, Boca Raton, 2015)

    Google Scholar 

  79. M. Eichhorn, Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers, IEEE J. Quantum Electron. 41, 1574 (2005)

    Google Scholar 

  80. F. Prudenzano, Erbium-doped hole-assisted optical fiber amplifier: Design and optimization, IEEE J. Lightwave Technol., 23, 330 (2005)

    Google Scholar 

  81. J. Liu, H. Hu, C. Shuai, An efficient algorithm based on propagation equations of Tm\(^{3+}\)-doped double-clad fiber laser, 2012 Symposium Photonics and Optoelectronics (SOPO), 1–4, 21–23 May (2012)

    Google Scholar 

  82. C.A. Evans, Z. Ikonic, B. Richards, P. Harrison, A. Jha, Theoretical modeling of a similar to 2 \(\mu \)m Tm\(^{3+}\)-doped tellurite fiber laser: the iInfluence of cross relaxation. IEEE J. Lightwave Technol. 27, 4026 (2009)

    Article  ADS  Google Scholar 

  83. C.A. Evans, Z. Ikonic, B. Richards, P. Harrison, A. Jha, A Numerical rate equation modeling of a similar to 2.1 \(\mu \)m - Tm\(^{3+}\)/Ho\(^{3+}\) co-doped tellurite fiber laser. IEEE J. Lightwave Technol. 27, 4280 (2009)

    Article  ADS  Google Scholar 

  84. S.D. Jackson, T.A. King, Theoretical modeling of Tm-doped silica fiber lasers. IEEE J. Lightwave Technol. 17, 948 (1999)

    Article  ADS  Google Scholar 

  85. J. Li, L. Gomes, S.D. Jackson, Numerical modeling of holmium-doped fluoride fiber lasers. IEEE J. Quantum Electron. 48, 596 (2012)

    Article  ADS  Google Scholar 

  86. S. Sujecki, L. Sojka, E. Beres-Pawlik, Z. Tang, D. Furniss, A.B. Seddon, T.M. Benson, Modelling of a simple Dy\(^{3+}\) doped chalcogenide glass fibre laser for mid-infrared light generation. Opt. Quantum Electron 42, 69 (2010)

    Article  Google Scholar 

  87. L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A.B. Seddon, T.M. Benson, S. Sujecki, Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy\(^{3+}\), Pr\(^{3+}\) and Tb\(^{3+}\), Opt. Mater. Express 2, 1632 (2012)

    Google Scholar 

  88. R.S. Quimby, L.B. Shaw, J.S. Sanghera, I.D. Aggarwal, Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5 \(\mu \)m. IEEE Photon. Technol. Lett. 20, 23 (2008)

    Article  Google Scholar 

  89. S.D. Jackson, M. Pollnau, J. Li, Diode pumped erbium cascade fiber lasers. IEEE J. Quantum Electron. 47, 471 (2011)

    Article  ADS  Google Scholar 

  90. S.D. Jackson, High-power erbium cascade fibre laser. Electron. Lett 45, 830 (2009)

    Article  Google Scholar 

  91. T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, M. Kikuchi, High-power continuous-wave 3- and 2-\(\mu \)m cascade Ho\(^{3+}\): ZBLAN fiber laser and its medical applications, J. Sel. Top. Quant. Electron 5, 936 (1999)

    Google Scholar 

  92. J. Kiusalaas, Numerical Methods In Engineering With MATLAB (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  93. Y.H. Ja, Using the shooting method to solve boundary-value problems involving nonlinear coupled-wave equations. Opt. Quantum Electron 15, 529 (1983)

    Article  ADS  Google Scholar 

  94. S. Sujecki, Stability of steady-state high-power semiconductor laser models, J. Opt. Soc. Am. B 24, 1053 (2007)

    Google Scholar 

  95. X. Liu, B. Lee, A fast and stable method for Raman amplifier propagation equations. Opt. Express 11, 1452 (2003)

    Article  ADS  Google Scholar 

  96. L.D. Zohreh, K. Feisa, H.R. Mohammad, An efficient shooting method for fiber amplifiers and lasers. Opt. Laser Technol. 40, 1041 (2008)

    Article  Google Scholar 

  97. Q. Mao, J. Wang, X. Sun, M. Zhang, A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber. Opt. Commun. 159, 149 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been partly supported by the European Commission through the framework Seven (FP7) project MINERVA (317803; www.minerva-project.eu)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Benson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sojka, L. et al. (2017). The Modelling of Fibre Lasers for Mid-Infrared Wavelengths. In: Agrawal, A., Benson, T., De La Rue, R., Wurtz, G. (eds) Recent Trends in Computational Photonics. Springer Series in Optical Sciences, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-55438-9_2

Download citation

Publish with us

Policies and ethics