Advertisement

Endocrine Sequelae of Central Nervous System Irradiation

  • Steven G. WaguespackEmail author
  • Wassim Chemaitilly
Chapter

Abstract

Children with central nervous system (CNS) tumors who are treated with irradiation are uniquely at risk for the development of endocrinopathies due to acquired anterior pituitary and thyroid dysfunction, which can in turn negatively affect linear growth, pubertal development, metabolism, skeletal health, and quality of life. The risk for anterior pituitary dysfunction increases with the dose of radiation delivered to the hypothalamic-pituitary axis (HPA) and with the duration of follow-up. Concomitant spinal irradiation also increases the risk of primary hypothyroidism and thyroid neoplasia. Endocrine sequelae may take years to manifest, and their clinical symptoms may be indolent and nonspecific. Early recognition and treatment should lead to better long-term health outcomes and improvements in the quality of life of childhood brain tumor survivors. The radiation oncologist can help reduce the impact of long-term endocrine sequelae by understanding the HPA and thyroid dose tolerance and facilitating the early referral and timely diagnosis of at-risk patients.

Keywords

Hypopituitarism Radiation CNS tumor Childhood Pediatric Growth hormone deficiency Risk Adult height 

References

  1. Armstrong GT, Chow EJ, Sklar CA (2009a) Alterations in pubertal timing following therapy for childhood malignancies. Endocr Dev 15:25–39. doi: 10.1159/000207616 CrossRefPubMedGoogle Scholar
  2. Armstrong GT, Whitton JA, Gajjar A, Kun LE, Chow EJ, Stovall M, Leisenring W, Robison LL, Sklar CA (2009b) Abnormal timing of menarche in survivors of central nervous system tumors: a report from the Childhood Cancer Survivor Study. Cancer 115(11):2562–2570. doi: 10.1002/cncr.24294 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beckers D, Thomas M, Jamart J, Francois I, Maes M, Lebrethon MC, De Waele K, Tenoutasse S, De Schepper J (2010) Adult final height after GH therapy for irradiation-induced GH deficiency in childhood survivors of brain tumors: the Belgian experience. Eur J Endocrinol 162(3):483–490. doi: 10.1530/EJE-09-0690 CrossRefPubMedGoogle Scholar
  4. Brauner R, Czernichow P, Rappaport R (1984) Precocious puberty after hypothalamic and pituitary irradiation in young children. N Engl J Med 311(14):920PubMedGoogle Scholar
  5. Brauner R, Czernichow P, Rappaport R (1986) Greater susceptibility to hypothalamopituitary irradiation in younger children with acute lymphoblastic leukemia. J Pediatr 108(2):332CrossRefPubMedGoogle Scholar
  6. Brignardello E, Felicetti F, Castiglione A, Chiabotto P, Corrias A, Fagioli F, Ciccone G, Boccuzzi G (2013) Endocrine health conditions in adult survivors of childhood cancer: the need for specialized adult-focused follow-up clinics. Eur J Endocrinol 168(3):465–472. doi: 10.1530/EJE-12-1043 CrossRefPubMedGoogle Scholar
  7. Chemaitilly W, Sklar CA (2010) Endocrine complications in long-term survivors of childhood cancers. Endocr Relat Cancer 17(3):R141–R159. doi: 10.1677/ERC-10-0002 CrossRefPubMedGoogle Scholar
  8. Chemaitilly W, Li Z, Huang S, Ness KK, Clark KL, Green DM, Barnes N, Armstrong GT, Krasin MJ, Srivastava DK, Pui CH, Merchant TE, Kun LE, Gajjar A, Hudson MM, Robison LL, Sklar CA (2015a) Anterior hypopituitarism in adult survivors of childhood cancers treated with cranial radiotherapy: a report from the St Jude Lifetime Cohort study. J Clin Oncol 33(5):492–500. doi: 10.1200/JCO.2014.56.7933 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chemaitilly W, Merchant TE, Li Z, Barnes N, Armstrong GT, Ness KK, Pui CH, Kun LE, Robison LL, Hudson MM, Sklar CA, Gajjar A (2015b) Central precocious puberty following the diagnosis and treatment of paediatric cancer and central nervous system tumours: presentation and long-term outcomes. Clin Endocrinol 84(3):361–371. doi: 10.1111/cen.12964 CrossRefGoogle Scholar
  10. Chen M, Eugster EA (2015) Central precocious puberty: update on diagnosis and treatment. Paediatr Drugs 17(4):273–281. doi: 10.1007/s40272-015-0130-8 CrossRefPubMedGoogle Scholar
  11. Chieng PU, Huang TS, Chang CC, Chong PN, Tien RD, Su CT (1991) Reduced hypothalamic blood flow after radiation treatment of nasopharyngeal cancer: SPECT studies in 34 patients. AJNR Am J Neuroradiol 12(4):661–665PubMedGoogle Scholar
  12. Children’s Oncology Group (2013) Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers, Version 4.0. Children’s Oncology Group. http://www.survivorshipguidelines.org
  13. Chow EJ, Friedman DL, Yasui Y, Whitton JA, Stovall M, Robison LL, Sklar CA (2008) Timing of menarche among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer 50(4):854–858. doi: 10.1002/pbc.21316 CrossRefPubMedGoogle Scholar
  14. Chrousos GP, Kino T, Charmandari E (2009) Evaluation of the hypothalamic-pituitary-adrenal axis function in childhood and adolescence. Neuroimmunomodulation 16(5):272–283. doi: 10.1159/000216185 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ciaccio M, Gil S, Guercio G, Vaiani E, Alderete D, Palladino M, Warman DM, Rivarola MA, Belgorosky A (2010) Effectiveness of rhGH treatment on adult height in GH-deficient childhood survivors of medulloblastoma. Horm Res Paediatr 73(4):281–286. doi: 10.1159/000284393 CrossRefPubMedGoogle Scholar
  16. Clayton PE, Shalet SM (1991) The evolution of spinal growth after irradiation. Clin Oncol 3(4):220–222CrossRefGoogle Scholar
  17. Constine LS, Woolf PD, Cann D, Mick G, McCormick K, Raubertas RF, Rubin P (1993) Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med 328(2):87–94. doi: 10.1056/NEJM199301143280203 CrossRefPubMedGoogle Scholar
  18. Darzy KH (2009) Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab 5(2):88–99. doi: 10.1038/ncpendmet1051 CrossRefPubMedGoogle Scholar
  19. Diller L, Chow EJ, Gurney JG, Hudson MM, Kadin-Lottick NS, Kawashima TI, Leisenring WM, Meacham LR, Mertens AC, Mulrooney DA, Oeffinger KC, Packer RJ, Robison LL, Sklar CA (2009) Chronic disease in the Childhood Cancer Survivor Study cohort: a review of published findings. J Clin Oncol 27(14):2339–2355. doi: 10.1200/JCO.2008.21.1953 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edgar AB, Morris EM, Kelnar CJ, Wallace WH (2009) Long-term follow-up of survivors of childhood cancer. Endocr Dev 15:159–180. doi: 10.1159/000207614 CrossRefPubMedGoogle Scholar
  21. Gan HW, Spoudeas HA (2014) Long-term follow-up of survivors of childhood cancer (SIGN Clinical Guideline 132). Arch Dis Child Educ Pract Ed 99(4):138–143. doi: 10.1136/archdischild-2013-305452 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gan HW, Phipps K, Aquilina K, Gaze MN, Hayward R, Spoudeas HA (2015) Neuroendocrine morbidity after pediatric optic gliomas: a longitudinal analysis of 166 children over 30 years. J Clin Endocrinol Metab 100(10):3787–3799. doi: 10.1210/jc.2015-2028 CrossRefPubMedGoogle Scholar
  23. Gleeson HK, Shalet SM (2004) The impact of cancer therapy on the endocrine system in survivors of childhood brain tumours. Endocr Relat Cancer 11(4):589–602. doi: 10.1677/erc.1.00779 CrossRefPubMedGoogle Scholar
  24. Gleeson HK, Stoeter R, Ogilvy-Stuart AL, Gattamaneni HR, Brennan BM, Shalet SM (2003) Improvements in final height over 25 years in growth hormone (GH)-deficient childhood survivors of brain tumors receiving GH replacement. J Clin Endocrinol Metab 88(8):3682–3689. doi: 10.1210/jc.2003-030366 CrossRefPubMedGoogle Scholar
  25. Growth Hormone Research Society (2000) Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society. J Clin Endocrinol Metab 85(11):3990–3993. doi: 10.1210/jcem.85.11.6984
  26. Gurney JG, Kadan-Lottick NS, Packer RJ, Neglia JP, Sklar CA, Punyko JA, Stovall M, Yasui Y, Nicholson HS, Wolden S, McNeil DE, Mertens AC, Robison LL, Childhood Cancer Survivor S (2003a) Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor Study. Cancer 97(3):663–673. doi: 10.1002/cncr.11095 CrossRefPubMedGoogle Scholar
  27. Gurney JG, Ness KK, Stovall M, Wolden S, Punyko JA, Neglia JP, Mertens AC, Packer RJ, Robison LL, Sklar CA (2003b) Final height and body mass index among adult survivors of childhood brain cancer: childhood cancer survivor study. J Clin Endocrinol Metab 88(10):4731–4739. doi: 10.1210/jc.2003-030784 CrossRefPubMedGoogle Scholar
  28. Gurney JG, Ness KK, Sibley SD, O’Leary M, Dengel DR, Lee JM, Youngren NM, Glasser SP, Baker KS (2006) Metabolic syndrome and growth hormone deficiency in adult survivors of childhood acute lymphoblastic leukemia. Cancer 107(6):1303–1312. doi: 10.1002/cncr.22120 CrossRefPubMedGoogle Scholar
  29. Hobbie WL, Mostoufi SM, Carlson CA, Gruccio D, Ginsberg JP (2011) Prevalence of advanced bone age in a cohort of patients who received cis-retinoic acid for high-risk neuroblastoma. Pediatr Blood Cancer 56(3):474–476. doi: 10.1002/pbc.22839 CrossRefPubMedGoogle Scholar
  30. Lam KS, Wang C, Yeung RT, Ma JT, Ho JH, Tse VK, Ling N (1986) Hypothalamic hypopituitarism following cranial irradiation for nasopharyngeal carcinoma. Clin Endocrinol 24(6):643–651CrossRefGoogle Scholar
  31. Langsenlehner T, Stiegler C, Quehenberger F, Feigl GC, Jakse G, Mokry M, Langsenlehner U, Kapp KS, Mayer R (2007) Long-term follow-up of patients with pituitary macroadenomas after postoperative radiation therapy: analysis of tumor control and functional outcome. Strahlenther Onkol 183(5):241–247. doi: 10.1007/s00066-007-1706-1 CrossRefPubMedGoogle Scholar
  32. Lannering B, Jansson C, Rosberg S, Albertsson-Wikland K (1997) Increased LH and FSH secretion after cranial irradiation in boys. Med Pediatr Oncol 29(4):280–287. doi: 10.1002/(SICI)1096-911X(199710)29:4<280::AID-MPO8>3.0.CO;2-I. [pii]CrossRefPubMedGoogle Scholar
  33. Laughton SJ, Merchant TE, Sklar CA, Kun LE, Fouladi M, Broniscer A, Morris EB, Sanders RP, Krasin MJ, Shelso J, Xiong Z, Wallace D, Gajjar A (2008) Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial. J Clin Oncol 26(7):1112–1118. doi: 10.1200/JCO.2008.13.5293 CrossRefPubMedGoogle Scholar
  34. Littley MD, Shalet SM, Beardwell CG, Ahmed SR, Applegate G, Sutton ML (1989) Hypopituitarism following external radiotherapy for pituitary tumours in adults. Q J Med 70(262):145–160PubMedGoogle Scholar
  35. Livesey EA, Hindmarsh PC, Brook CG, Whitton AC, Bloom HJ, Tobias JS, Godlee JN, Britton J (1990) Endocrine disorders following treatment of childhood brain tumours. Br J Cancer 61(4):622–625CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lustig RH, Post SR, Srivannaboon K, Rose SR, Danish RK, Burghen GA, Xiong X, Wu S, Merchant TE (2003) Risk factors for the development of obesity in children surviving brain tumors. J Clin Endocrinol Metab 88(2):611–616. doi: 10.1210/jc.2002-021180 CrossRefPubMedGoogle Scholar
  37. Mailhot Vega R, Kim J, Hollander A, Hattangadi-Gluth J, Michalski J, Tarbell NJ, Yock TI, Bussiere M, MacDonald SM (2015) Cost effectiveness of proton versus photon radiation therapy with respect to the risk of growth hormone deficiency in children. Cancer 121(10):1694–1702. doi: 10.1002/cncr.29209 CrossRefPubMedGoogle Scholar
  38. Meacham L (2003) Endocrine late effects of childhood cancer therapy. Curr Probl Pediatr Adolesc Health Care 33(7):217–242CrossRefPubMedGoogle Scholar
  39. Meacham LR, Sklar CA, Li S, Liu Q, Gimpel N, Yasui Y, Whitton JA, Stovall M, Robison LL, Oeffinger KC (2009) Diabetes mellitus in long-term survivors of childhood cancer. Increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch Intern Med 169(15):1381–1388. doi: 10.1001/archinternmed.2009.209 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Merchant TE, Rose SR, Bosley C, Wu S, Xiong X, Lustig RH (2011) Growth hormone secretion after conformal radiation therapy in pediatric patients with localized brain tumors. J Clin Oncol 29(36):4776–4780. doi: 10.1200/JCO.2011.37.9453 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Miyoshi Y, Ohta H, Hashii Y, Tokimasa S, Namba N, Mushiake S, Hara J, Ozono K (2008) Endocrinological analysis of 122 Japanese childhood cancer survivors in a single hospital. Endocr J 55(6):1055–1063CrossRefPubMedGoogle Scholar
  42. Mulder RL, Kremer LC, van Santen HM, Ket JL, van Trotsenburg AS, Koning CC, Schouten-van Meeteren AY, Caron HN, Neggers SJ, van Dalen EC (2009) Prevalence and risk factors of radiation-induced growth hormone deficiency in childhood cancer survivors: a systematic review. Cancer Treat Rev 35(7):616–632. doi: 10.1016/j.ctrv.2009.06.004 CrossRefPubMedGoogle Scholar
  43. Muller J (2002) Disturbance of pubertal development after cancer treatment. Best Pract Res Clin Endocrinol Metab 16(1):91–103CrossRefPubMedGoogle Scholar
  44. Ning MS, Perkins SM, Dewees T, Shinohara ET (2015) Evidence of high mortality in long term survivors of childhood medulloblastoma. J Neuro-Oncol 122(2):321–327. doi: 10.1007/s11060-014-1712-y CrossRefGoogle Scholar
  45. Oberfield SE, Soranno D, Nirenberg A, Heller G, Allen JC, David R, Levine LS, Sklar CA (1996) Age at onset of puberty following high-dose central nervous system radiation therapy. Arch Pediatr Adolesc Med 150(6):589–592CrossRefPubMedGoogle Scholar
  46. Ogilvy-Stuart AL, Clayton PE, Shalet SM (1994) Cranial irradiation and early puberty. J Clin Endocrinol Metab 78(6):1282–1286. doi: 10.1210/jcem.78.6.8200926 PubMedGoogle Scholar
  47. Palmert MR, Dunkel L (2012) Clinical practice. delayed puberty. N Engl J Med 366(5):443–453. doi: 10.1056/NEJMcp1109290 CrossRefPubMedGoogle Scholar
  48. Patterson BC, Truxillo L, Wasilewski-Masker K, Mertens AC, Meacham LR (2009) Adrenal function testing in pediatric cancer survivors. Pediatr Blood Cancer 53(7):1302–1307. doi: 10.1002/pbc.22208 CrossRefPubMedGoogle Scholar
  49. Patterson BC, Chen Y, Sklar CA, Neglia J, Yasui Y, Mertens A, Armstrong GT, Meadows A, Stovall M, Robison LL, Meacham LR (2014) Growth hormone exposure as a risk factor for the development of subsequent neoplasms of the central nervous system: a report from the childhood cancer survivor study. J Clin Endocrinol Metab 99(6):2030–2037. doi: 10.1210/jc.2013-4159 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Quigley C, Cowell C, Jimenez M, Burger H, Kirk J, Bergin M, Stevens M, Simpson J, Silink M (1989) Normal or early development of puberty despite gonadal damage in children treated for acute lymphoblastic leukemia. N Engl J Med 321(3):143–151CrossRefPubMedGoogle Scholar
  51. Raman S, Grimberg A, Waguespack SG, Miller BS, Sklar CA, Meacham LR, Patterson BC (2015) Risk of neoplasia in pediatric patients receiving growth hormone therapy—a report from the Pediatric Endocrine Society Drug and Therapeutics Committee. J Clin Endocrinol Metab 100(6):2192–2203. doi: 10.1210/jc.2015-1002 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rose SR, Lustig RH, Pitukcheewanont P, Broome DC, Burghen GA, Li H, Hudson MM, Kun LE, Heideman RL (1999) Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab 84(12):4472–4479. doi: 10.1210/jcem.84.12.6097 PubMedGoogle Scholar
  53. Rose SR, Danish RK, Kearney NS, Schreiber RE, Lustig RH, Burghen GA, Hudson MM (2005) ACTH deficiency in childhood cancer survivors. Pediatr Blood Cancer 45(6):808–813. doi: 10.1002/pbc.20327 CrossRefPubMedGoogle Scholar
  54. Russell DL, Keil MF, Bonat SH, Uwaifo GI, Nicholson JC, McDuffie JR, Hill SC, Yanovski JA (2001) The relation between skeletal maturation and adiposity in African American and Caucasian children. J Pediatr 139(6):844–848. doi: 10.1067/mpd.2001.119446 CrossRefPubMedGoogle Scholar
  55. Rutter MM, Rose SR (2007) Long-term endocrine sequelae of childhood cancer. Curr Opin Pediatr 19(4):480–487. doi: 10.1097/MOP.0b013e3282058b56 CrossRefPubMedGoogle Scholar
  56. Schmiegelow M, Lassen S, Poulsen HS, Feldt-Rasmussen U, Schmiegelow K, Hertz H, Muller J (2000a) Cranial radiotherapy of childhood brain tumours: growth hormone deficiency and its relation to the biological effective dose of irradiation in a large population based study. Clin Endocrinol 53(2):191–197CrossRefGoogle Scholar
  57. Schmiegelow M, Lassen S, Poulsen HS, Feldt-Rasmussen U, Schmiegelow K, Hertz H, Muller J (2000b) Growth hormone response to a growth hormone-releasing hormone stimulation test in a population-based study following cranial irradiation of childhood brain tumors. Hormone Res 54(2):53–59. doi:53232CrossRefPubMedGoogle Scholar
  58. Schriock EA, Lustig RH, Rosenthal SM, Kaplan SL, Grumbach MM (1984) Effect of growth hormone (GH)-releasing hormone (GRH) on plasma GH in relation to magnitude and duration of GH deficiency in 26 children and adults with isolated GH deficiency or multiple pituitary hormone deficiencies: evidence for hypothalamic GRH deficiency. J Clin Endocrinol Metab 58(6):1043–1049. doi: 10.1210/jcem-58-6-1043 CrossRefPubMedGoogle Scholar
  59. Shalet SM, Gibson B, Swindell R, Pearson D (1987) Effect of spinal irradiation on growth. Arch Dis Child 62(5):461–464CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, Liu Y, Berkow RL, Hammond S, Neglia JP, Meadows AT, Sklar CA, Robison LL, Inskip PD (2005) Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet 365(9476):2014–2023. doi: 10.1016/S0140-6736(05)66695-0 CrossRefPubMedGoogle Scholar
  61. Sklar CA, Constine LS (1995) Chronic neuroendocrinological sequelae of radiation therapy. Int J Radiat Oncol Biol Phys 31(5):1113–1121. doi: 10.1016/0360-3016(94)00427-M CrossRefPubMedGoogle Scholar
  62. Stanley T (2012) Diagnosis of growth hormone deficiency in childhood. Curr Opin Endocrinol Diabetes Obes 19(1):47–52. doi: 10.1097/MED.0b013e32834ec952 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Stephen MD, Zage PE, Waguespack SG (2011) Gonadotropin-dependent precocious puberty: neoplastic causes and endocrine considerations. Int J Pediatr Endocrinol 2011:184502. doi: 10.1155/2011/184502 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tonorezos ES, Hudson MM, Edgar AB, Kremer LC, Sklar CA, Wallace WH, Oeffinger KC (2015) Screening and management of adverse endocrine outcomes in adult survivors of childhood and adolescent cancer. Lancet Diabetes Endocrinol 3(7):545–555. doi: 10.1016/S2213-8587(15)00038-8 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Toogood AA (2004) Endocrine consequences of brain irradiation. Growth Horm IGF Res 14(Suppl A):S118–S124. doi: 10.1016/j.ghir.2004.03.038 CrossRefPubMedGoogle Scholar
  66. Weinzimer SA, Homan SA, Ferry RJ, Moshang T (1999) Serum IGF-I and IGFBP-3 concentrations do not accurately predict growth hormone deficiency in children with brain tumours. Clin Endocrinol 51(3):339–345CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Endocrine Neoplasia and Hormonal DisordersThe Children’s Cancer Hospital, The University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Division of Endocrinology, Department of Pediatric Medicine and the Department of Epidemiology and Cancer ControlSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations