Advertisement

Imaging of Pediatric Central Nervous System Tumors

  • Edgar G. Ordóñez-Rubiano
  • Rachel S. Hicklen
  • Laura Rivera-Osorio
  • Jason M. Johnson
Chapter

Abstract

Central nervous system (CNS) tumors are the most common type of solid tumors in the pediatric population. Neuroimaging is the sine quo non for state-of-the-art care of pediatric patients with central nervous system neoplasms. A variety of noninvasive imaging techniques are described which have shown utility in patient care from the time of initial diagnosis to surgical and radiation planning and then also during posttreatment surveillance for treatment effects, complications and to exclude recurrent disease. This overview of imaging techniques will hopefully give the reader a better understanding in choosing appropriate imaging strategies for optimal individualized patient care.

Keywords

Neuroimaging Pediatric Central nervous system Tumor 

References

  1. Board PDQ PTE (2002) Childhood brain and spinal cord tumors treatment overview (PDQ(R)): health professional version. PDQ cancer information summaries. National Cancer Institute (US), Bethesda, MDGoogle Scholar
  2. Borja MJ, Plaza MJ, Altman N, Saigal G (2013) Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. AJR Am J Roentgenol 200(5):W483–W503CrossRefPubMedGoogle Scholar
  3. Carr JC, Shaibani A, Russell E, Finn JP (2001) Contrast-enhanced magnetic resonance angiography of the carotid circulation. Top Magn Reson Imaging 12(5):349–357CrossRefPubMedGoogle Scholar
  4. Chen CC, Carter BS, Wang R et al (2016) Congress of neurological surgeons systematic review and evidence-based guideline on preoperative imaging assessment of patients with suspected nonfunctioning pituitary adenomas. Neurosurgery 79(4):E524–E526CrossRefPubMedGoogle Scholar
  5. Chung EM, Specht CS, Schroeder JW (2007) From the archives of the AFIP: pediatric orbit tumors and tumorlike lesions: neuroepithelial lesions of the ocular globe and optic nerve. Radiographics 27(4):1159–1186CrossRefPubMedGoogle Scholar
  6. Craig E, Connolly DJ, Griffiths PD, Raghavan A, Lee V, Batty R (2012) MRI protocols for imaging paediatric brain tumours. Clin Radiol 67(9):829–832CrossRefPubMedGoogle Scholar
  7. Duffau H (2007) Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Clin Neurophysiol 37(6):373–382CrossRefGoogle Scholar
  8. Fan X, Roberts DW, Schaewe TJ et al Intraoperative image updating for brain shift following dural opening. J Neurosurg 2016:1–10Google Scholar
  9. Fox PT, Mintun MA, Raichle ME, Herscovitch P (1984) A noninvasive approach to quantitative functional brain mapping with H2 (15)O and positron emission tomography. J Cereb Blood Flow Metab 4(3):329–333CrossRefPubMedGoogle Scholar
  10. Garcia-Alvarez R, Liney GP, Beavis AW (2006) Repeatability of functional MRI for conformal avoidance radiotherapy planning. J Magn Reson Imaging 23(2):108–114CrossRefPubMedGoogle Scholar
  11. Ho CY, Cardinal JS, Kamer AP, Lin C, Kralik SF (2016) Contrast leakage patterns from dynamic susceptibility contrast perfusion MRI in the grading of primary pediatric brain tumors. AJNR Am J Neuroradiol 37(3):544–551CrossRefPubMedGoogle Scholar
  12. Hodler J, Kubik-Huch RA, von Schulthess GK (2016) Diseases of the brain, head and neck, spine 2016-2019: diagnostic imaging. Springer International Printing, DavosCrossRefGoogle Scholar
  13. Johnson J, Meader A, Hunt D (2012) Pearls and pitfalls of noninvasive carotid imaging. In: Abbara S, Kalva S (eds) Vascular imaging pearls and pitfalls. Springer, New YorkGoogle Scholar
  14. Jolesz FA (2005) Future perspectives for intraoperative MRI. Neurosurg Clin N Am 16(1):201–213CrossRefPubMedGoogle Scholar
  15. Lam S, Lin Y, Warnke PC (2014) Permeability imaging in pediatric brain tumors. Transl Pediatr 3(3):218–228PubMedPubMedCentralGoogle Scholar
  16. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24(10):1989–1998PubMedGoogle Scholar
  17. Le Bihan D, Iima M (2015) Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLoS Biol 13(7):e1002203CrossRefPubMedPubMedCentralGoogle Scholar
  18. Leclerc X, Gauvrit JY, Nicol L, Pruvo JP (1999) Contrast-enhanced MR angiography of the craniocervical vessels: a review. Neuroradiology 41(12):867–874CrossRefPubMedGoogle Scholar
  19. Liu Y, Li F, Zhu S, Liu M, Wu C (2008) Clinical features and treatment of meningiomas in children: report of 12 cases and literature review. Pediatr Neurosurg 44(2):112–117CrossRefPubMedGoogle Scholar
  20. Loeffler JS, Siddon RL, Wen PY, Nedzi LA, Alexander E III (1990) Stereotactic radiosurgery of the brain using a standard linear accelerator: a study of early and late effects. Radiother Oncol 17(4):311–321CrossRefPubMedGoogle Scholar
  21. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22(4):949–962CrossRefPubMedGoogle Scholar
  22. Mangla R, Kolar B, Zhu T, Zhong J, Almast J, Ekholm S (2011) Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. AJNR Am J Neuroradiol 32(6):1004–1010CrossRefPubMedGoogle Scholar
  23. Marx M, Langer T, Beck JD, Dorr HG (1999) Disorders of endocrine function after brain tumor therapy in childhood. Strahlenther Onkol 175(7):305–308CrossRefPubMedGoogle Scholar
  24. Metcalfe P, Liney GP, Holloway L et al (2013) The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat 12(5):429–446CrossRefPubMedPubMedCentralGoogle Scholar
  25. Muller J (2002) Disturbance of pubertal development after cancer treatment. Best Pract Res Clin Endocrinol Metab 16(1):91–103CrossRefPubMedGoogle Scholar
  26. Mustert BR, Williams DM, Prince MR (1998) In vitro model of arterial stenosis: correlation of MR signal dephasing and trans-stenotic pressure gradients. Magn Reson Imaging 16(3):301–310CrossRefPubMedGoogle Scholar
  27. Narayana A, Chang J, Thakur S et al (2007) Use of MR spectroscopy and functional imaging in the treatment planning of gliomas. Br J Radiol 80(953):347–354CrossRefPubMedGoogle Scholar
  28. Nederkoorn PJ, van der Graaf Y, Eikelboom BC, van der Lugt A, Bartels LW, Mali WP (2002) Time-of-flight MR angiography of carotid artery stenosis: does a flow void represent severe stenosis? AJNR Am J Neuroradiol 23(10):1779–1784PubMedGoogle Scholar
  29. Ogawa S, Tank DW, Menon R et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol 16(Suppl 4):iv1–i63CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ostrom QT, de Blank PM, Kruchko C et al (2015) Alex’s Lemonade Stand Foundation Infant and Childhood Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neuro Oncol 16(Suppl 10):x1–x36CrossRefPubMedGoogle Scholar
  32. Paiva FF, Tannus A, Silva AC (2007) Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed 20(7):633–642CrossRefPubMedPubMedCentralGoogle Scholar
  33. Panigrahy A, Bluml S (2009) Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol 24(11):1343–1365CrossRefPubMedGoogle Scholar
  34. Paulino AC, Simon JH, Zhen W, Wen BC (2000) Long-term effects in children treated with radiotherapy for head and neck rhabdomyosarcoma. Int J Radiat Oncol Biol Phys 48(5):1489–1495CrossRefPubMedGoogle Scholar
  35. Pirotte BJ, Lubansu A, Massager N et al (2010) Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr 5(5):486–499CrossRefPubMedGoogle Scholar
  36. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(Suppl 2):43S–63SCrossRefPubMedGoogle Scholar
  37. Plaza MJ, Borja MJ, Altman N, Saigal G (2013) Conventional and advanced MRI features of pediatric intracranial tumors: posterior fossa and suprasellar tumors. AJR Am J Roentgenol 200(5):1115–1124CrossRefPubMedGoogle Scholar
  38. Pujol J, Conesa G, Deus J, Lopez-Obarrio L, Isamat F, Capdevila A (1998) Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg 88(5):863–869CrossRefPubMedGoogle Scholar
  39. Schmidt MA, Payne GS (2015) Radiotherapy planning using MRI. Phys Med Biol 60(22):R323–R361CrossRefPubMedPubMedCentralGoogle Scholar
  40. Verstappen CC, Heimans JJ, Hoekman K, Postma TJ (2003) Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs 63(15):1549–1563CrossRefPubMedGoogle Scholar
  41. Vogl TJ, Balzer JO, Stemmler J, Bergman C, Egger E, Lissner J (1992) MR angiography in children with cerebral neurovascular diseases: findings in 31 cases. AJR Am J Roentgenol 159(4):817–823CrossRefPubMedGoogle Scholar
  42. Wang HH, Luo CB, Guo WY et al (2013) Preoperative embolization of hypervascular pediatric brain tumors: evaluation of technical safety and outcome. Child’s Nerv Syst 29(11):2043–2049CrossRefGoogle Scholar
  43. Warren KE (2012) Diffuse intrinsic pontine glioma: poised for progress. Front Oncol 2:205CrossRefPubMedPubMedCentralGoogle Scholar
  44. Weiss B (2008) Chemobrain: a translational challenge for neurotoxicology. Neurotoxicology 29(5):891–898CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yang CW, Carr JC, Futterer SF et al (2005) Contrast-enhanced MR angiography of the carotid and vertebrobasilar circulations. AJNR Am J Neuroradiol 26(8):2095–2101PubMedGoogle Scholar
  46. Yu J, Shi WE, Zhao R, Gao X, Li H (2015) Epidemiology of brain tumors in children aged two and under: a 10-year single-institute study. Oncol Lett 9(4):1651–1656PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Edgar G. Ordóñez-Rubiano
    • 1
  • Rachel S. Hicklen
    • 2
  • Laura Rivera-Osorio
    • 3
  • Jason M. Johnson
    • 4
  1. 1.Neurosurgery Department, Fundación Universitaria de Ciencias de la Salud, Hospital de San JoséHospital Infantil Universitario de San JoséBogotá D.C.Colombia
  2. 2.Research Medical LibraryThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.School of MedicineUniversidad del RosarioBogotá D.C.Colombia
  4. 4.Diagnostic Imaging, Department of Diagnostic RadiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations