Advertisement

Image Guidance in Pediatric Brain Radiotherapy

  • Sara Alcorn
  • Stephanie TerezakisEmail author
Chapter

Abstract

Image guided radiotherapy (IGRT) in pediatrics provides a means for reduction of treatment volumes by permitting for the use of highly conformal plans with smaller treatment margins. IGRT may additionally allow for dose escalation and adaptive radiotherapy strategies. Current practice patterns and clinical protocols support the use of weekly or daily IGRT as standard practice in pediatric brain-directed IGRT. However, the benefits of IGRT must be weighed against its costs including potentially significant additional radiation dose, supporting the need to study lower dose IGRT protocols in this population. This chapter reviews common modalities of IGRT and the literature regarding its use specific to pediatric brain radiotherapy.

References

  1. AAPM (2009) The role of in-room kV X-ray imaging for patient setup and target localization. Report of AAPM Task Group 104. In: American Association of Physicists in Medicine. Medical Physics Publishing, Madison, WIGoogle Scholar
  2. Ahunbay EE, Peng C, Holmes S et al (2010) Online adaptive replanning method for prostate radiotherapy. Int J Radiat Oncol Biol Phys 77:1561–1572. doi: 10.1016/j.ijrobp.2009.10.013 CrossRefPubMedGoogle Scholar
  3. Alcorn SR, Chen MJ, Claude L et al (2014a) Practice patterns of photon and proton pediatric image guided radiation treatment: results from an International Pediatric Research Consortium. Pract Radiat Oncol 4(5):336–341. doi: 10.1016/j.prro.2014.03.014 CrossRefPubMedGoogle Scholar
  4. Alcorn S, Nilsson K, McNutt T et al (2014b) Low-dose cone-beam CT protocol for image-guided CNS radiotherapy: predictors of setup accuracy from a multinational pediatric consortium. In: SIOP 46th Congress, TorontoGoogle Scholar
  5. Antonuk LE (2002) Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research. Phys Med Biol 47:R31–R65. doi: 10.1088/0031-9155/47/6/201 CrossRefPubMedGoogle Scholar
  6. Beltran C, Naik M, Merchant TE (2009) Role of adaptive radiotherapy in pediatric craniopharyngioma. In: ASTRO 51st annual meetingGoogle Scholar
  7. Beltran C, Pegram A, Merchant TE (2012) Dosimetric consequences of rotational errors in radiation therapy of pediatric brain tumor patients. Radiother Oncol 102:206–209. doi: 10.1016/j.radonc.2011.06.013 CrossRefPubMedGoogle Scholar
  8. Bucci M, Dong L, Liao Z et al (2007) Comparison of tumor shrinkage in proton and photon radiotherapy of lung cancer. In: ASTRO 49th annual meetingGoogle Scholar
  9. Cao Y (2011) The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol 21:147–156. doi: 10.1016/j.semradonc.2010.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castadot P, Lee JA, Geets X, Grégoire V (2010) Adaptive radiotherapy of head and neck cancer. Semin Radiat Oncol 20:84–93. doi: 10.1016/j.semradonc.2009.11.002 CrossRefPubMedGoogle Scholar
  11. Chauvet B, de Rauglaudre G, Mineur L et al (2003) [Dose-response relationship in radiotherapy: an evidence?]. Cancer Radiother 7 Suppl 1:8s–14sGoogle Scholar
  12. Chen CC, Chapman P, Petit J, Loeffler J (2007) Proton radiosurgery in neurosurgery. Neurosurg Focus 23:E5. doi: 10.3171/FOC-07/12/E5 PubMedGoogle Scholar
  13. Dawson LA, Jaffray DA (2007) Advances in image-guided radiation therapy. J Clin Oncol 25:938–946. doi: 10.1200/JCO.2006.09.9515 CrossRefPubMedGoogle Scholar
  14. De Crevoisier R, Kuban D, Lefkopoulos D (2006) Radiothérapie guidée par tomodensitométrie associée à l’accélérateur linéaire dans la salle de traitement. Cancer/Radiotherapie 10:245–251. doi: 10.1016/j.canrad.2006.06.004 CrossRefGoogle Scholar
  15. Ding GX, Coffey CW (2009) Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73:610–617. doi: 10.1016/j.ijrobp.2008.10.006 CrossRefPubMedGoogle Scholar
  16. Dong L (2012) What do we know about adaptive radiotherapy? In: AAMD region II meeting, HoustonGoogle Scholar
  17. Engelsman M, Schwarz M, Dong L (2013) Physics controversies in proton therapy. Semin Radiat Oncol 23:88–96. doi: 10.1016/j.semradonc.2012.11.003 CrossRefPubMedGoogle Scholar
  18. Frank SJ, Dong L, Kudchadker RJ et al (2008) Quantification of prostate and seminal vesicle interfraction variation during IMRT. Int J Radiat Oncol Biol Phys 71:813–820. doi: 10.1016/j.ijrobp.2007.10.028 CrossRefPubMedGoogle Scholar
  19. Fu D, Kuduvalli G (2008) A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery. Med Phys 35:2180–2194. doi: 10.1118/1.2903431 CrossRefPubMedGoogle Scholar
  20. Goyal S, Kataria T (2014) Image guidance in radiation therapy: techniques and applications. Radiol Res Pract 2014:1–10. doi: 10.1155/2014/705604 CrossRefGoogle Scholar
  21. Grégoire V, Mackie TR (2011) State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83). Cancer Radiother 15:555–559. doi: 10.1016/j.canrad.2011.04.003 CrossRefPubMedGoogle Scholar
  22. Gupta T, Narayan CA (2012) Image-guided radiation therapy: physician’s perspectives. J Med Phys 37:174–182. doi: 10.4103/0971-6203.103602 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hitchen CJ, Osa E-O, Dewyngaert JK et al (2012) Dose to craniofacial region through portal imaging of pediatric brain tumors. J Appl Clin Med Phys 13:3385CrossRefPubMedGoogle Scholar
  24. Huynh-Le M-P, Alcorn S, Smith K et al (2014) Comparison of setup accuracy with low-dose vs. standard-dose CBCT in pediatric and adult brain image-guided radiotherapy. In: ASTRO 56th annual meeting, San FranciscoGoogle Scholar
  25. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349. doi: 10.1016/S0360-3016(02)02884-5 CrossRefPubMedGoogle Scholar
  26. Jaffray D, Kupelian P, Djemil T, Macklis RM (2007) Review of image-guided radiation therapy. Expert Rev Anticancer Ther 7:89–103. doi: 10.1586/14737140.7.1.89 CrossRefPubMedGoogle Scholar
  27. Kim S, Yoshizumi TT, Frush DP et al (2010) Radiation dose from cone beam CT in a pediatric phantom: risk estimation of cancer incidence. Am J Roentgenol 194:186–190. doi: 10.2214/AJR.08.2168 CrossRefGoogle Scholar
  28. Michalski J, Purdy JA, Gaspar L et al (2001) Radiation Therapy Oncology Group. Research Plan 2002-2006. Image-Guided Radiation Therapy Committee. Int J Radiat Oncol Biol Phys 51:60–65. doi: 10.1038/358375a0 CrossRefPubMedGoogle Scholar
  29. Nishio T, Miyatake A, Ogino T et al (2010) The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy. Int J Radiat Oncol Biol Phys 76:277–286. doi: 10.1016/j.ijrobp.2009.05.065 CrossRefPubMedGoogle Scholar
  30. Pollack A, Zagars GK, Starkschall G et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105CrossRefPubMedGoogle Scholar
  31. Ruchala KJ, Olivera GH, Schloesser EA, Mackie TR (1999) Megavoltage CT on a tomotherapy system. Phys Med Biol 44:2597–2621. doi: 10.1088/0031-9155/44/10/316 CrossRefPubMedGoogle Scholar
  32. Stroom JC, Heijmen BJM (2002) Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 64:75–83. doi: 10.1016/S0167-8140(02)00140-8 CrossRefPubMedGoogle Scholar
  33. Van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol 14:52–64CrossRefPubMedGoogle Scholar
  34. Van Herk M (2011) Margins and margin recipes. In: AAPM Summer SchoolGoogle Scholar
  35. Verellen D, De Ridder M, Storme G (2008) A (short) history of image-guided radiotherapy. Radiother Oncol 86:4–13. doi: 10.1016/j.radonc.2007.11.023 CrossRefPubMedGoogle Scholar
  36. Zhang Y, Yan Y, Nath R et al (2012) Personalized assessment of kV cone beam computed tomography doses in image-guided radiotherapy of pediatric cancer patients. Int J Radiat Oncol Biol Phys 83:1649–1654. doi: 10.1016/j.ijrobp.2011.10.072 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Radiation Oncology and Molecular Radiation SciencesJohns Hopkins School of Medicine, The Johns Hopkins HospitalBaltimoreUSA

Personalised recommendations