Skip to main content

Degradation of the Dinitrotoluene Isomers 2,4- and 2,6-DNT: Appraising the Role of Microorganisms

  • Chapter
  • First Online:

Abstract

The dinitrotoluene (DNT) isomers 2,4- and 2,6-DNT are highly toxic compounds, and their occurrence in groundwater and soils is a widespread problem mainly due to the explosive manufacturing industry and from the commercial production of polyurethane foam. Moreover, these compounds have mutagenic and carcinogenic properties making them a great hazard to the public health. Thus, their removal from the environment is paramount, and bioremediation strategies can be applied for the environmental cleanup. Pure cultures of microorganisms able to degrade at least 2,4-DNT have been recently isolated as well as a consortium and different plant species. The pure cultures are an Arthrobacter strain isolated from crude oil-contaminated soil, a Rhodococcus pyridinovorans NT2, and Shewanella marisflavi EP1, while the consortium named UHasselt Sofie 3 (UHS3) was formed by Burkholderia HC114, Variovorax paradoxus VM685, Bacillus, Pseudomonas mandelii HC88, and Ralstonia HC90. These microorganisms perform the degradation of the dinitrotoluenes in aerobic conditions except the marine strain Shewanella marisflavi. The plant species able to grow in the presence of 2,4-DNT and proposed for phytoremediation are hemp, flax, sunflower, and mustard. The intermediates reported in the majority of successful biodegradation studies are 4-methyl-5-nitrocatechol (4M5NC) and 2-hydroxy-5-methylquinone (2H5MQ) under aerobic conditions, while 2,4-diaminotoluene is obtained as an end product via the formation of 2-amino-4-nitrotoluene (2A4NT) and 4-amino-2-nitrotoluene (4A2NT) under anaerobic conditions. These microorganisms add to the growing number of isolates with the ability to degrade these types of compounds since strain DNT was isolated. This mini-review focuses on the microorganisms involved in the degradation of the dinitrotoluene isomers 2,4- and 2,6-DNT in recent years. Information related to the degradation of these contaminants is critical to understanding and predicting their fate in the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aburto A, Ball AS (2009) Bacterial population dynamics and separation of active degraders by stable isotope probing during benzene degradation in a BTEX-impacted aquifer. Rev Int Contam Ambient 25(3):147–156

    CAS  Google Scholar 

  • Aburto A, Fahy A, Coulon F, Lethbridge G, Timmis KN, Ball AS, McGenity TJ (2009) Mixed aerobic and anaerobic microbial communities in benzene-contaminated groundwater. J Appl Microbiol 106(1):317–328

    Article  CAS  Google Scholar 

  • Anuradha PB, Jagdish (2015) Microbial degradation of expired slurry explosives in mines: a review. Int J Environ Stud 72(1):117–131

    Article  CAS  Google Scholar 

  • Bausum HT, Mitchell WR, Major MA (1992) Biodegradation of 2,4- and 2,6-dinitrotoluene by freshwater microorganisms. J Environ Sci Health Part A 27(3):663–695

    Google Scholar 

  • Behzadian F, Barjeste H, Hosseinkhani S, Zarei AR (2011) Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Curr Microbiol 62(2):690–696

    Article  CAS  Google Scholar 

  • Burlage RS, Youngblood T, Lamothe D (1998) Bioreporter bacteria for landmine detection. In: Minwara conference, Monterey, 5–9 Apr 1998; Other Information: PBD: Apr 1998 (pp. Medium: ED; Size: 15 p)

    Google Scholar 

  • Cheng J, Kanjo Y, Suidan MT, Venosa AD (1996) Anaerobic biotransformation of 2,4-dinitrotoluene with ethanol as primary substrate: Mutual effect of the substrates on their biotransformation. Water Res 30(2):307–314

    Article  CAS  Google Scholar 

  • Cheng J, Suidan MT, Venosa AD (1998) Anaerobic biotransformation of 2,4-dinitrotoluene with ethanol, methanol, acetic acid and hydrogen as primary substrates. Water Res 32(10):2921–2930

    Article  CAS  Google Scholar 

  • de las Heras A, Chavarría M, de Lorenzo V (2011) Association of dnt genes of Burkholderia sp. DNT with the substrate-blind regulator DntR draws the evolutionary itinerary of 2, 4-dinitrotoluene biodegradation. Mol Microbiol 82(2):287–299

    Article  Google Scholar 

  • Dodard SG, Renoux AY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999) Ecotoxicity characterization of dinitrotoluenes and some of their reduced metabolites. Chemosphere 38(9):2071–2079

    Article  CAS  Google Scholar 

  • Dutta SK, Hollowell GP, Hashem FM, Kuykendall DL (2003) Enhanced bioremediation of soil containing 2,4-dinitrotoluene by a genetically modified Sinorhizobium meliloti. Soil Biol Biochem 35(5):667–675

    Article  CAS  Google Scholar 

  • Ellis III HV, Hagensen JH, Hodgson JR, Minor JL, Hong CB (1979) Mammalian toxicity of munition compounds. Phase III. Effects of lifetime exposure. Part I. 2, 4-Dinitrotoluene: DTIC document

    Google Scholar 

  • Fahy A, McGenity TJ, Timmis KN, Ball AS (2006) Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 58(2):260–270

    Article  CAS  Google Scholar 

  • Fahy A, Ball AS, Lethbridge G, Timmis KN et al (2008) Isolation of alkalitolerant benzene-degrading bacteria from a contaminated sandstone aquifer. Lett Appl Microbiol 47:60–66

    Article  CAS  Google Scholar 

  • Fish PA, Webster DA, Stark BC (2000) Vitreoscilla hemoglobin enhances the first step in 2,4-dinitrotoluene degradation in vitro and at low aeration in vivo. J Mol Catal B: Enzym 9(1–3):75–82

    Article  CAS  Google Scholar 

  • Fortner JD, Zhang C, Spain JC, Hughes JB (2003) Soil column evaluation of factors controlling biodegradation of DNT in the Vadose zone. Environ Sci Technol 37(15):3382–3391

    Article  CAS  Google Scholar 

  • Gan HM, Shahir S, Ibrahim Z, Yahya A (2011) Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant. Chemosphere 82(4):507–513

    Article  CAS  Google Scholar 

  • Gong P, Kuperman RG, Sunahara GI (2003) Genotoxicity of 2,4- and 2,6-dinitrotoluene as measured by the Tradescantia micronucleus (Trad-MCN) bioassay. Mutat Res Genet Toxicol Environ Mutagen 538(1–2):13–18

    Article  CAS  Google Scholar 

  • Gorontzy T, Drzyzga O, Kahl MW, Bruns-nagel D, Breitung J, Ev L, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20(4):265–284

    Article  CAS  Google Scholar 

  • Haigler BE, Nishino SF, Spain JC (1994) Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J Bacteriol 176(11):3433–3437

    Article  CAS  Google Scholar 

  • Haigler BE, Suen WC, Spain JC (1996) Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT. J Bacteriol 178(20):6019–6024

    Article  CAS  Google Scholar 

  • Haigler BE, Johnson GR, Suen WC, Spain JC (1999) Biochemical and genetic evidence formeta-ring cleavage of 2,4,5-trihydroxytoluene in Burkholderia sp. strain DNT. J Bacteriol 181(3):965–972

    CAS  Google Scholar 

  • Han S, Mukherji ST, Rice A, Hughes JB (2011) Determination of 2,4- and 2,6-dinitrotoluene biodegradation limits. Chemosphere 85(5):848–853

    Article  CAS  Google Scholar 

  • Huang J, Ning G, Li F, Sheng GD (2015) Biotransformation of 2,4-dinitrotoluene by obligate marine Shewanella marisflavi EP1 under anaerobic conditions. Bioresour Technol 180:200–206

    Article  CAS  Google Scholar 

  • Hudcova T, Halecky M, Kozliak E, Stiborova M, Paca J (2011) Aerobic degradation of 2,4-dinitrotoluene by individual bacterial strains and defined mixed population in submerged cultures. J Hazard Mater 192(2):605–613

    Article  CAS  Google Scholar 

  • Hughes JB, Wang CY, Bhadra R, Richardson A, Bennett GN, Rudolph FB (1998) Reduction of 2,4,6-trinitrotoluene by Clostridium acetobutylicum through hydroxylamino-nitrotoluene intermediates. Environ Toxicol Chem 17(3):343–348

    Article  CAS  Google Scholar 

  • Hughes JB, Wang CY, Zhang C (1999) Anaerobic biotransformation of 2,4-dinitrotoluene and 2,6-dinitrotoluene by Clostridium acetobutylicum: a pathway through dihydroxylamino intermediates. Environ Sci Technol 33(7):1065–1070

    Article  CAS  Google Scholar 

  • Johnson GR, Spain JC (2003) Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl Microbiol Biotechnol 62(2–3):110–123

    Article  CAS  Google Scholar 

  • Johnson GR, Jain RK, Spain JC (2000) Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: an extradiol dioxygenase from the 2,4-dinitrotoluene pathway. Arch Microbiol 173(2):86–90

    Article  CAS  Google Scholar 

  • Johnson GR, Jain RK, Spain JC (2002) Origins of the 2,4-dinitrotoluene pathway. J Bacteriol 184(15):4219–4232

    Article  CAS  Google Scholar 

  • Küce P, Coral G, Kantar C (2015) Biodegradation of 2,4-dinitrotoluene (DNT) by Arthrobacter sp. K1 isolated from a crude oil contaminated soil. Ann Microbiol 65(1):467–476

    Article  Google Scholar 

  • Kundu D, Hazra C, Chaudhari A (2015) Isolation, screening and assessment of microbial isolates for biodegradation of 2, 4-and 2, 6-dinitrotoluene. Int J Curr Microbiol App Sci 4(1):564–574

    Google Scholar 

  • Lendenmann U, Spain JC, Smets BF (1998) Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor. Environ Sci Technol 32(1):82–87

    Article  CAS  Google Scholar 

  • Leungsakul T, Keenan BG, Yin H, Smets BF, Wood TK (2005) Saturation mutagenesis of 2,4-DNT dioxygenase of Burkholderia sp. strain DNT for enhanced dinitrotoluene degradation. Biotechnol Bioeng 92(4):416–426

    Article  CAS  Google Scholar 

  • Lin J-M, Stark B, Webster D (2003) Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (2,4-DNT) dioxygenase activity of Burkholderia and on 2,4-DNT degradation in two-phase bioreactors. J Ind Microbiol Biotechnol 30(6):362–368

    Article  CAS  Google Scholar 

  • Lönneborg R, Varga E, Brzezinski P (2012) Directed evolution of the transcriptional regulator DntR: isolation of mutants with improved DNT-Response. PLoS One 7(1):e29994

    Article  Google Scholar 

  • Nasr MA, Hwang K-W, Akbas M, Webster DA, Stark BC (2001) Effects of culture conditions on enhancement of 2,4-dinitrotoluene degradation by Burkholderia engineered with the Vitreoscilla hemoglobin gene. Biotechnol Prog 17(2):359–361

    Article  CAS  Google Scholar 

  • Nishino SF, Spain JC (2001) Technology status review: Bioremediation of dinitrotoluene (DNT): DTIC document

    Google Scholar 

  • Nishino S, Spain J (2004) Catabolism of nitroaromatic compounds. In: Ramos JL (ed) Pseudomonas. Springer US, Boston, pp 575–608

    Chapter  Google Scholar 

  • Nishino SF, Spain JC, Lenke H, Knackmuss H-J (1999) Mineralization of 2,4- and 2,6-Dinitrotoluene in Soil Slurries. Environ Sci Technol 33(7):1060–1064

    Article  CAS  Google Scholar 

  • Nishino SF, Paoli GC, Spain JC (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66(5):2139–2147

    Article  CAS  Google Scholar 

  • Noguera DR, Freedman DL (1996) Reduction and acetylation of 2,4-dinitrotoluene by a Pseudomonas aeruginosa strain. Appl Environ Microbiol 62(7):2257–2263

    CAS  Google Scholar 

  • O’Sullivan D, Denzel J, Prak LD (2010) Photolysis of 2,4-dinitrotoluene and 2,6-dinitrotoluene in seawater. Aquat Geochem 16(3):491–505

    Article  Google Scholar 

  • Oh S-Y, Kang S-G, Chiu PC (2010) Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Sci Total Environ 408(16):3464–3468

    Article  CAS  Google Scholar 

  • Ortega-Calvo J-J, Fesch C, Harms H (1999) Biodegradation of sorbed 2,4-dinitrotoluene in a clay-rich, aggregated porous medium. Environ Sci Technol 33(21):3737–3742

    Article  CAS  Google Scholar 

  • Páca J, Halecký M, Hudcová T, Bajpai R (2008) Aerobic biodegradation of dinitrotoluenes in batch systems by pure and mixed cultures. Folia Microbiol 53(2):105–109

    Article  Google Scholar 

  • Paca J, Halecky M, Barta J, Bajpai R (2009) Aerobic biodegradation of 2,4-DNT and 2,6-DNT: performance characteristics and biofilm composition changes in continuous packed-bed bioreactors. J Hazard Mater 163(2–3):848–854

    Article  CAS  Google Scholar 

  • Patel SM, Stark BC, Hwang K-W, Dikshit KL, Webster DA (2000) Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2,4-dinitrotoluene degradation. Biotechnol Prog 16(1):26–30

    Article  CAS  Google Scholar 

  • Phutane SR, Renner JN, Nelson SL, Seames WS, Páca J, Sundstrom TJ, Kozliak EI (2007) Removal of 2,4-dinitrotoluene from concrete using bioremediation, agar extraction, and photocatalysis. Folia Microbiol 52(3):253–260

    Article  CAS  Google Scholar 

  • Podlipná R, Pospíšilová B, Vaněk T (2015) Biodegradation of 2,4-dinitrotoluene by different plant species. Ecotoxicol Environ Saf 112:54–59

    Article  Google Scholar 

  • Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, Dhanasekaran DN (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol 3(6):325–330

    Article  CAS  Google Scholar 

  • Rickert DE, Butterworth BE, Popp JA, Krahn DF (1984) Dinitrotoluene: acute toxicity, oncogenicity, genotoxicity, and metabolism. CRC Crit Rev Toxicol 13(3):217–234

    Article  CAS  Google Scholar 

  • Rodríguez MC, Monti MR, Argaraña CE, Rivas GA (2006) Enzymatic biosensor for the electrochemical detection of 2,4-dinitrotoluene biodegradation derivatives. Talanta 68(5):1671–1676

    Article  Google Scholar 

  • Shin K-H, Lim Y, Ahn J-H, Khil J, Cha C-J, Hur H-G (2005) Anaerobic biotransformation of dinitrotoluene isomers by Lactococcus lactis subsp. lactis strain 27 isolated from earthworm intestine. Chemosphere 61(1):30–39

    Article  CAS  Google Scholar 

  • Snellinx Z, Taghavi S, Vangronsveld J, van der Lelie D (2003) Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 14(1):19–29

    Article  CAS  Google Scholar 

  • Spain JC, Hughes JB, Knackmuss H-J (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton

    Google Scholar 

  • Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE (1991) Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 57(11):3200–3205

    CAS  Google Scholar 

  • Stark B, Dikshit K, Pagilla K (2011) Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla. Biotechnol Lett 33(9):1705–1714

    Article  CAS  Google Scholar 

  • Su Y-H, Zhu Y-G (2007) Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. Environ Pollut 148(1):94–100

    Article  CAS  Google Scholar 

  • Suen WC, Spain JC (1993) Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation. J Bacteriol 175(6):1831–1837

    Article  CAS  Google Scholar 

  • Suen WC, Haigler BE, Spain JC (1996) 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J Bacteriol 178(16):4926–4934

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: An ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658

    Article  Google Scholar 

  • Thijs S, Weyens N, Sillen W, Gkorezis P, Carleer R, Vangronsveld J (2014) Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil. J Microbial Biotechnol 7(4):294–306

    Article  CAS  Google Scholar 

  • Valli K, Brock BJ, Joshi DK, Gold MH (1992) Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58(1):221–228

    CAS  Google Scholar 

  • VanderLoop SL, Suidan MT, Moteleb MA, Maloney SW (1999) Biotransformation of 2,4-dinitrotoluene under different electron acceptor conditions. Water Res 33(5):1287–1295

    Article  CAS  Google Scholar 

  • Walia SK, Ali-Sadat S, Brar R, Chaudhry RG (2002) Identification and mutagenicity of dinitrotoluene metabolites produced by strain Pseudomonas putida OU83. Pestic Biochem Physiol 73(3):131–139

    Article  CAS  Google Scholar 

  • Wang ZY, Ye ZF, Zhang MH (2011) Bioremediation of 2,4-dinitrotoluene (2,4-DNT) in immobilized micro-organism biological filter. J Appl Microbiol 110(6):1476–1484

    Article  CAS  Google Scholar 

  • Xu J, Jing N (2012) Effects of 2,4-dinitrotoluene exposure on enzyme activity, energy reserves and condition factors in common carp (Cyprinus carpio). J Hazard Mater 203–204:299–307

    Article  Google Scholar 

  • Yagur-Kroll S, Lalush C, Rosen R, Bachar N, Moskovitz Y, Belkin S (2014) Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 98(2):885–895

    Article  CAS  Google Scholar 

  • Yagur-Kroll S, Amiel E, Rosen R, Belkin S (2015) Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution. Appl Microbiol Biotechnol 99(17):7177–7188

    Article  CAS  Google Scholar 

  • Yang H, Zhao JS, Hawari J (2009) Effect of 2,4-dinitrotoluene on the anaerobic bacterial community in marine sediment. J Appl Microbiol 107(6):1799–1808

    Article  CAS  Google Scholar 

  • Zhang C, Hughes JB, Nishino SF, Spain JC (2000) Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentrations. Environ Sci Technol 34(13):2810–2816

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Aburto-Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aburto-Medina, A., Taha, M., Shahsavari, E., Ball, A.S. (2017). Degradation of the Dinitrotoluene Isomers 2,4- and 2,6-DNT: Appraising the Role of Microorganisms. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55426-6_2

Download citation

Publish with us

Policies and ethics