Skip to main content

Exploiting Nitrogen-Fixing Rhizobial Symbionts Genetic Resources for Improving Phytoremediation of Contaminated Soils

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants

Abstract

Rhizobia are one of the most relevant components of the plant-associated microbiota. They are found both in soil and associated as commensals or symbionts with several plant taxa. In particular, with leguminous plants, they establish a symbiotic association, which allow the bacteria to express the enzyme nitrogenase responsible for the reduction of atmospheric dinitrogen. Consequently, rhizobia allow host plants to colonize marginal lands and nitrogen-deficient soils, for instance, contaminated soils. The use of legume-rhizobial symbiosis for phytoremediation would allow increasing plant coverage (then phytostabilization) of contaminated areas, without the need of expensive nitrogen fertilization of the soil. Moreover, among host legumes, both pioneer plants (of for instance degraded lands) and crops (as alfalfa) are present, which allow an easy implementation of agronomical practices. Finally, the large genomic and phenotypic diversity of rhizobia allows the selection of elite strains resistant to harsh soil conditions and the creation of potentially new strains with the desired features for assisting legume-based phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117(1):232–242

    Article  CAS  Google Scholar 

  • Alexandre A, Oliveira S (2013) Response to temperature stress in rhizobia. Crit Rev Microbiol 39(3):219–228

    Article  CAS  Google Scholar 

  • Biondi EG, Mengoni A, Brilli M, Bazzicalupo M, Mocali S (2009) Systematic approach for the improvement of alfalfa production using genomic diversity of sinorhizobium meliloti natural populations. JGI User Meeting:1

    Google Scholar 

  • Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, de Lajudie P, Galiana A (2012) Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecol 80(3):534–547

    Article  CAS  Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw HD (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation. A multidisciplinary approach. Dioscorides Press, Portland

    Google Scholar 

  • di Cenzo GC, Finan TM (2015) Genetic redundancy is prevalent within the 6.7 mb Sinorhizobium meliloti genome. Mol Genet Genomics. 2015;290(4):1345–1356. doi:10.1007/s00438-015-0998-6

  • diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM (2014) Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 10(10):e1004742

    Article  Google Scholar 

  • Chaintreuil C, Rigault F, Moulin L, Jaffre T, Fardoux J, Giraud E, Dreyfus B, Bailly X (2007) Nickel resistance determinants in bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl Environ Microbiol 73(24):8018–8022

    Article  CAS  Google Scholar 

  • Chan GYS, Zhi HY, Wong MH (2003) Comparison of four sesbania species to remediate pb/zn and cu mine tailings. Environ Manag 32(2):246–251

    Article  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008) Biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    Article  CAS  Google Scholar 

  • Coba de la Peña T, Verdoy D, Redondo F, Pueyo JJ (2003) Salt tolerance in the rhizobium-legume symbiosis: an overview. Plant Mol Biol 1:187–205

    Google Scholar 

  • Denison RF (2000) Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am Naturalist 156(6):567–576

    Article  Google Scholar 

  • Denison RF, Kiers ET (2004) Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microb Infect 6(13):1235–1239

    Article  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    Article  CAS  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Balaji J, Buhariwalla HK, Blair MW, Ortiz R, Crouch JH, Serraj R (2010) Using genomics to exploit grain legume biodiversity in crop improvement. Plant breeding reviews. Wiley, New York, pp 171–357

    Google Scholar 

  • Dwivedi SL, Sahrawat KL, Upadhyaya HD, Mengoni A, Galardini M, Bazzicalupo M, Biondi EG, Hungria M, Kaschuk G, Blair MW, Ortiz R (2015) Advances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. Adv Agron 129:1–116

    Article  Google Scholar 

  • Elboutahiri N, Thami-Alami I, Udupa S (2010) Phenotypic and genetic diversity in Sinorhizobium meliloti and s. Medicae from drought and salt affected regions of morocco. BMC Microbiol 10(1):15

    Article  Google Scholar 

  • Engqvist LG, MÃ¥rtensson A, Orlowska E, Turnau K, Belimov AA, Borisov AY, Gianinazzi-Pearson V (2006) For a successful pea production on polluted soils, inoculation with beneficial microbes requires active interaction between the microbial components and the plant. Acta Agric Scand B-S P 56(1):9–16

    CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of ochrobactrum intermedium and bacillus cereus on vigna radiata plants. Lett Appl Microbiol 43(4):461–466

    Article  CAS  Google Scholar 

  • Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng J-F et al (2011) Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics 12(1):235

    Article  CAS  Google Scholar 

  • Galardini M, Bazzicalupo M, Biondi E, Brambilla E, Brilli M, Bruce D, Chain P et al (2013) Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains bo21cc and ak58. Stand Genomic Sci 9:2

    Article  Google Scholar 

  • Galardini M, Mengoni A, Mocali S (2015) From pangenome to panphenome and back. In: Mengoni A, Fondi M, Galardini M (eds) Bacterial pangenomics. Springer, New York, pp 257–270

    Chapter  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56(4):403–407

    Article  CAS  Google Scholar 

  • Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) millsp. Intl J Phytoremediation 14(1):62–74

    Article  Google Scholar 

  • Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  CAS  Google Scholar 

  • González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC et al (2006) The partitioned rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103(10):3834–3839

    Article  Google Scholar 

  • Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) Nreb from Achromobacter xylosoxidans 31a is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183(9):2803–2807

    Article  CAS  Google Scholar 

  • Guo JK, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–214

    Article  CAS  Google Scholar 

  • Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contam Toxicol 73(2):424–431

    Article  CAS  Google Scholar 

  • Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Intl J Phytoremediation 16(2):179–202

    Article  CAS  Google Scholar 

  • Hao X, Xie P, Zhu Y-G, Taghavi S, Wei G, Rensing C (2015) Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. Environ Sci Technol 49(4):2328–2340

    Article  CAS  Google Scholar 

  • Hungria M, Franco AA, Sprent JI (1993) New sources of high-temperature tolerant rhizobia for Phaseolus vulgaris L. Plant Soil 149(1):103–109

    Article  Google Scholar 

  • Ismail H, Ijah U, Riskuwa M, Allamin I (2014) Biodegradation of spent engine oil by bacteria isolated from the rhizosphere of legumes grown in contaminated soil. Int J Environ 3(2):63–75

    Article  Google Scholar 

  • Li Z, Ma Z, Hao X, Wei G (2012) Draft genome sequence of Sinorhizobium meliloti ccnwsx0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings. J Bacteriol 194(5):1267–1268

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, Hao X, Rensing C, Wei G (2014) Genes conferring copper resistance in Sinorhizobium meliloti ccnwsx0020 also promote the growth of Medicago lupulina in copper-contaminated soil. Appl Environ Microbiol 80(6):1961–1971

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63(1):541–556

    Article  CAS  Google Scholar 

  • Mahieu S, Frèrot H, Cl V, Galiana A, Heulin K, Maure L, Brunel B, Lefébvre C, Escarré J, Cleyet-Marel J-C (2011) Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 342(1–2):405–417

    Article  CAS  Google Scholar 

  • Mehmannavaza R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 35:955–963

    Article  Google Scholar 

  • Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331(1):5–16

    Article  CAS  Google Scholar 

  • Mengoni A, Galardini M, Fondi M (2014) Bacterial pangenomics: methods and protocols. Springer, New York

    Google Scholar 

  • Mnasri B, Mrabet M, Laguerre G, Aouani M, Mhamdi R (2007) Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. Mediterranense) of Sinorhizobium meliloti. Arch Microbiol 187(1):79–85

    Article  CAS  Google Scholar 

  • Pajuelo E, Dary M, Palomares AJ, Rodriguez-Llorente ID, Carrasco JA, Chamber MA (2008) Biorhizoremediation of heavy metals toxicity using rhizobium-legume symbioses. Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer, New York, pp 101–104

    Book  Google Scholar 

  • Pini F, Spini G, Galardini M, Bazzicalupo M, Benedetti A, Chiancianesi M, Florio A, Lagomarsino A, Migliore M, Mocali S, Mengoni A (2013) Molecular phylogeny of the nickel-resistance gene MREB and functional role in the nickel sensitive symbiotic nitrogen fixing bacterium Sinorhizobium meliloti. Plant Soil 377:189–201

    Article  Google Scholar 

  • Provorov NA, Tikhonovich IA (2003) Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet Resour Crop Evol 50(1):89–99

    Article  CAS  Google Scholar 

  • Rai UN, Pandey K, Sinha S, Singh A, Saxena R, Gupta DK (2004) Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and rhizobium inoculation. Environ Int 30(3):293–300

    Article  CAS  Google Scholar 

  • Rani A, Souche YS, Goel R (2009) Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic pseudomonas putida 62bn and alkalophilic Pseudomonas monteilli 97an strains on soybean. Int Biodeteriorat Biodegrad 63(1):62–66

    Article  CAS  Google Scholar 

  • Reeve W, Ardley J, Tian R, Eshragi L, Yoon JW, Ngamwisetkun P, Seshadri R, Ivanova NN, Kyrpides NC (2015) A genomic encyclopedia of the root nodule bacteria: assessing genetic diversity through a systematic biogeographic survey. Stand Genomic Sci 10:14

    Article  Google Scholar 

  • Roumiantseva ML (2009) Genetic resources of nodule bacteria. Russ J Genet 45(9):1013–1026

    Article  CAS  Google Scholar 

  • Safronova VPG, Belimov AA, Bullitta S (2010) Combined inoculation with rhizosphere and nodule bacteria improves growth, nutrition and heavy metal uptake of pasture legumes grown in polluted mine waste. Biol Fertil Soil (BFS0-D-10-00240, under review)

    Google Scholar 

  • Safronova V, Piluzza G, Bullitta S, Belimov A (2011) Use of legume-microbe symbioses for phytoremediation of heavy metal polluted soils: advantages and potential problems. Handbook of Phytoremediation. Nova Science Publishers, Inc., Hauppauge NY 11788–3619, United States of America pp 443–469

    Google Scholar 

  • Saraswat S, Rai JPN (2011) Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils. Int J Phytoremediation 13(3):271–288

    Article  CAS  Google Scholar 

  • Sheaffer CC, Seguin P (2003) Forage legumes for sustainable cropping systems. J Crop Prod 8(1–2):187–216

    Article  CAS  Google Scholar 

  • Shuguang J, Weijun S, Zhongyi Y (2009) Enhanced adaptability of Sesbania rostrata to Pb/Zn tailings via stem nodulation. J Environ Sci 21(8):1135–1141

    Article  Google Scholar 

  • Sinha S, Rai UN, Bhatt K, Pandey K, Gupta AK (2005) Fly-ash-induced oxidative stress and tolerance in Prosopis juliflora L. grown on different amended substrates. Environ Monit Assess 102(1–3):447–457

    Article  CAS  Google Scholar 

  • Smith SR, Giller KE (1992) Effective rhizobium Leguminosarum bio-var trifolii present in five soils contaminated with heavy metals from long-term applications of sewage sludge or metal mine spoil. Soil Biol Biochem 24:781–788

    Article  CAS  Google Scholar 

  • Spini G, Decorosi F, Cerboneschi M, Tegli S, Mengoni A, Viti C, Giovannetti L (2015) Effect of the plant flavonoid luteolin on Ensifer meliloti 3001 phenotypic responses. Plant Soil 399:159–178

    Article  Google Scholar 

  • Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32. doi:10.3389/fpls.2015.00032

    Article  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin A (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955

    Article  CAS  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11(5):472–477

    Article  CAS  Google Scholar 

  • Trabelsi D, Mengoni A, Aouani ME, Bazzicalupo M, Mhamdi R (2010) Genetic diversity and salt tolerance of Sinorhizobium populations from two Tunisian soils. Ann Microbiol 60:1–7

    Article  Google Scholar 

  • Van Rhijn P, Vanderleyden J (1995) The rhizobium-plant symbiosis. Microbiol Rev 59(1):124–142

    Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J, Béna G, Brunel B, Cleyet-Marel J-C (2009) Mesorhizobium metallidurans sp. Nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in languedoc, France. Int J Syst Evol Microbiol 59(4):850–855

    Article  CAS  Google Scholar 

  • Vriezen JAC, de Bruijn FJ, Nüsslein K (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol 73:3451–3459

    Article  CAS  Google Scholar 

  • Wang HB, Shu WS, Lan CY (2005) Ecology for heavy metal pollution: recent advances and future prospects. Acta Ecol Sin 25(3):596–605

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth, symbiosis, seed yield, and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Chromium-reducing and plant growth-promoting mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30(1):159–163

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Effect of metal-tolerant plant growth-promoting rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55(1):33–42

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008c) Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev 28(3):449–455

    Article  Google Scholar 

  • Young JP, Crossman L, Johnston A, Thomson N, Ghazoui Z, Hull K, Wexler M, Curson A et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7(4):R34

    Article  Google Scholar 

  • Younis M (2007) Responses of Lablab purpureus-rhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci 3(1):111–122

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    CAS  Google Scholar 

  • Zahran H (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91(2–3):143–153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Mengoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Checcucci, A., Bazzicalupo, M., Mengoni, A. (2017). Exploiting Nitrogen-Fixing Rhizobial Symbionts Genetic Resources for Improving Phytoremediation of Contaminated Soils. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55426-6_13

Download citation

Publish with us

Policies and ethics