Advertisement

Pose-Graph SLAM for Underwater Navigation

  • Stephen M. Chaves
  • Enric Galceran
  • Paul Ozog
  • Jeffrey M. Walls
  • Ryan M. Eustice
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 474)

Abstract

This chapter reviews the concept of pose-graph simultaneous localization and mapping (SLAM) for underwater navigation . We show that pose-graph SLAM is a generalized framework that can be applied to many diverse underwater navigation problems in marine robotics . We highlight three specific examples as applied in the areas of autonomous ship hull inspection and multi-vehicle cooperative navigation .

Keywords

Inertial Measurement Unit Underwater Vehicle Factor Graph Ship Hull Cooperative Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agarwal, S., Mierle, K., Others: Ceres solver. http://ceres-solver.org
  2. 2.
    Bahr, A., Walter, M.R., Leonard, J.J.: Consistent cooperative localization. In: Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3415–3422 (2009)Google Scholar
  3. 3.
    Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)CrossRefGoogle Scholar
  4. 4.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  5. 5.
    Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.D., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)CrossRefGoogle Scholar
  6. 6.
    Carlevaris-Bianco, N., Kaess, M., Eustice, R.M.: Generic node removal for factor-graph SLAM. IEEE Trans. Robot. 30(6), 1371–1385 (2014)CrossRefGoogle Scholar
  7. 7.
    Chaves, S.M., Kim, A., Galceran, E., Eustice, R.M.: Opportunistic sampling-based active visual SLAM for underwater inspection. Auton. Robot. 40(7), 1245–1265 (2016)CrossRefGoogle Scholar
  8. 8.
    Dellaert,F., Carlson, J., Ila, V., Ni, K., Thorpe, C.E.: Subgraph-preconditioned conjugate gradients for large scale SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 2566–2571 (2010)Google Scholar
  9. 9.
    Dellaert, F., Others: Gtsam. https://borg.cc.gatech.edu/download
  10. 10.
    Dellaert, F., Kaess, M.: Square root SAM: simultaneous localization and mapping via square root information smoothing. Int. J. Robot. Res. 25(12), 1181–1203 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Duckett, T., Marsland, S., Shapiro, J.: Fast, on-line learning of globally consistent maps. Auton. Robot. 12(3), 287–300 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)CrossRefGoogle Scholar
  13. 13.
    Eustice, R., Camilli, R., Singh, H.: Towards bathymetry-optimized Doppler re-navigation for AUVs. In: Proceedings of the IEEE/MTS OCEANS Conference and Exhibition, Washington, DC, USA, pp. 1430–1436 (2005)Google Scholar
  14. 14.
    Eustice, R., Pizarro, O., Singh, H., Howland, J.: UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab. In: Proceedings of the International Symposium on Underwater Technology, Tokyo, Japan, pp. 141–145 (2002)Google Scholar
  15. 15.
    Eustice, R.M., Singh, H., Leonard, J.J.: Exactly sparse delayed-state filters for view-based SLAM. IEEE Trans. Robot. 22(6), 1100–1114 (2006)CrossRefGoogle Scholar
  16. 16.
    Eustice, R.M., Pizarro, O., Singh, H.: Visually augmented navigation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 33(2), 103–122 (2008)CrossRefGoogle Scholar
  17. 17.
    Eustice, R.M., Singh, H., Whitcomb, L.L.: Synchronous-clock one-way-travel-time acoustic navigation for underwater vehicles. J. F. Robot. 28(1), 121–136 (2011)CrossRefGoogle Scholar
  18. 18.
    Fallon, M.F., Papadopoulis, G., Leonard, J.J.: A measurement distribution framework for cooperative navigation using multiple AUVs. In: Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, pp. 4256–4263 (2010)Google Scholar
  19. 19.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Haralick, R.M.: Propagating covariance in computer vision. In: Proceedings of the International Conference Pattern Recognition, vol. 1, Jerusalem, Israel, pp. 493–498 (1994)Google Scholar
  21. 21.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hover, F.S., Vaganay, J., Elkins, M., Willcox, S., Polidoro, V., Morash, J., Damus, R., Desset, S.: A vehicle system for autonomous relative survey of in-water ships. Mar. Technol. Soc. J. 41(2), 44–55 (2007)CrossRefGoogle Scholar
  23. 23.
    Ila, V., Polok, L., Solony, M., Smrz, P., Zemcik, P.: Fast covariance recovery in incremental nonlinear least square solvers. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, pp. 4636–4643 (2015)Google Scholar
  24. 24.
    Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)CrossRefGoogle Scholar
  25. 25.
    Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2: incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31(2), 216–235 (2012)CrossRefGoogle Scholar
  26. 26.
    Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., Teller, S.: Multiple relative pose graphs for robust cooperative mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, Alaska, pp. 3185–3192 (2010)Google Scholar
  27. 27.
    Kim, A., Eustice, R.M.: Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Trans. Robot. 29(3), 719–733 (2013)CrossRefGoogle Scholar
  28. 28.
    Kim, A., Eustice, R.M.: Active visual SLAM for robotic area coverage: theory and experiment. Int. J. Robot. Res. 34(4–5), 457–475 (2015)CrossRefGoogle Scholar
  29. 29.
    Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: Underwater vehicle navigation: recent advances and new challenges. In: IFAC Conference on Manoeuvring and Control of Marine Craft, Lisbon, Portugal (2006)Google Scholar
  30. 30.
    Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3607–3613 (2011)Google Scholar
  31. 31.
    Leonard, J.J., Durrant-Whyte, H.: Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, pp. 1442–1447 (1991)Google Scholar
  32. 32.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  33. 33.
    Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robot. 4(4), 333–349 (1997)CrossRefGoogle Scholar
  34. 34.
    Meduna, D., Rock, S., McEwen, R.: Low-cost terrain relative navigation for long-range AUVs. In: Proceedings of the IEEE/MTS OCEANS Conference and Exhibition, Woods Hole, MA, USA, pp. 1–7 (2008)Google Scholar
  35. 35.
    Ozog, P., Eustice, R.M.: Real-time SLAM with piecewise-planar surface models and sparse 3D point clouds. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 1042–1049 (2013)Google Scholar
  36. 36.
    Ozog, P., Carlevaris-Bianco, N., Kim, A., Eustice, R.M.: Long-term mapping techniques for ship hull inspection and surveillance using an autonomous underwater vehicle. J. F. Robot. 33(3), 265–289 (2016)CrossRefGoogle Scholar
  37. 37.
    Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 11(4), 23–33 (2007)CrossRefGoogle Scholar
  38. 38.
    Paull, L., Seto, M., Leonard, J.J.: Decentralized cooperative trajectory estimation for autonomous underwater vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, pp. 184–191 (2014)Google Scholar
  39. 39.
    Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)CrossRefGoogle Scholar
  40. 40.
    Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Cox, I., Wilfong, G. (eds.) Autonomous Robot Vehicles, pp. 167–193. Springer, Berlin (1990)CrossRefGoogle Scholar
  41. 41.
    Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous localization and mapping with sparse extended information filters. Int. J. Robot. Res. 23(7–8), 693–716 (2004)CrossRefGoogle Scholar
  42. 42.
    Thrun, S., Montemerlo, M.: The graph SLAM algorithm with application to large-scale mapping of urban structures. Int. J. Robot. Res. 25(5–6), 403–429 (2006)CrossRefGoogle Scholar
  43. 43.
    Walls, J.M., Cunningham, A.G., Eustice, R.M.: Cooperative localization by factor composition over faulty low-bandwidth communication channels. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA (2015)Google Scholar
  44. 44.
    Walls, J.M., Eustice, R.M.: An origin state method for communication constrained cooperative localization with robustness to packet loss. Int. J. Robot. Res. 33(9), 1191–1208 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stephen M. Chaves
    • 1
  • Enric Galceran
    • 2
  • Paul Ozog
    • 1
  • Jeffrey M. Walls
    • 1
  • Ryan M. Eustice
    • 1
  1. 1.University of MichiganAnn ArborUSA
  2. 2.ETH ZurichZürichSwitzerland

Personalised recommendations