Advertisement

Motion Control of ROVs for Mapping of Steep Underwater Walls

  • Stein M. Nornes
  • Asgeir J. Sørensen
  • Martin Ludvigsen
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 474)

Abstract

This chapter describes an equipment setup and motion control strategy for automated visual mapping of steep underwater walls using a remotely operated vehicle (ROV) equipped with a horizontally facing doppler velocity logger (DVL) to provide vehicle velocity and distance measurements relative to the underwater wall. The main scientific contribution is the development of the motion control strategy for distance keeping and adaptive orientation using measurements from a DVL mounted in an arbitrary orientation. Autonomy aspects concerning this type of mapping operation are also discussed. The still images recorded by the stereo cameras of the ROV are post-processed into a 3D photogrammetry model using a combination of commercially available software and freeware. The system was implemented on an ROV and tested on a survey of a rock wall in the Trondheimsfjord in April 2016.

Keywords

Autonomous Underwater Vehicle Remotely Operate Vehicle Side Scan Sonar Guidance Module Adaptive Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been carried out at the Centre for Autonomous Marine Operations and Systems (NTNU AMOS). This work was supported by the Research Council of Norway through the Centres of Excellence funding scheme, Project number 223254 - NTNU AMOS. The authors would also like to thank the crew of the Applied Underwater Robotics Laboratory (NTNU AUR-Lab) and RV Gunnerus for their help in carrying out the experiments.

References

  1. 1.
    Agisoft LLC. http://www.agisoft.com. Accessed 14 July 2016
  2. 2.
    Allied Vision Tehnologies. http://www.altavision.com.br/Arquivos/AVT/Manuals/GC1380_User_Manual.pdf. Accessed 15 July 2016
  3. 3.
  4. 4.
    Bowen, A.D., Yoerger, D.R., Taylor, C., McCabe, R., Howland, J., Gomez-Ibanez, D., Kinsey, J.C., Heintz, M., McDonald, G., Peters, D.B., Fletcher, B., Young, C., Buescher, J., Whitcomb, L.L., Martin, S.C., Webster, S.E., Jakuba, M.V.: The Nereus hybrid underwater robotic vehicle. Underwater Technol. Int. J. Soc. Underwater Technol. 28(3), 79–89 (2009)CrossRefGoogle Scholar
  5. 5.
    Caccia, M., Bono, R., Bruzzone, G., Veruggio, G.: Bottom-following for remotely operated vehicles. Control Eng. Pract. 11(4), 461–470 (2003). (MCMC00)CrossRefzbMATHGoogle Scholar
  6. 6.
    Candeloro, M., Mosciaro, F., Sørensen, A.J., Ippoliti, G., Ludvigsen, M.: Sensor-based autonomous path-planner for sea-bottom exploration and mosaicking. IFAC-PapersOnLine 48(16), 31–36 (2015)CrossRefGoogle Scholar
  7. 7.
    Dukan, F., Ludvigsen, M., Sørensen, A.J.: Dynamic positioning system for a small size ROV with experimental results. In: OCEANS 2011 IEEE - Spain (2011)Google Scholar
  8. 8.
    Dukan, F., Sørensen, A.J.: Sea floor geometry approximation and altitude control of ROVs. IFAC J. Control Eng. Pract. (CEP) 29, 135–146 (2014)CrossRefGoogle Scholar
  9. 9.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: Real-time optical slam-based mosaicking for unmanned underwater vehicles. Intell. Serv. Robot. 5(1), 55–71 (2012)CrossRefGoogle Scholar
  10. 10.
    Fossum, T.O., Ludvigsen, M., Nornes, S.M., Rist-Christensen, I., Brusletto, L.: Autonomous robotic intervention using ROV: an experimental approach. In: OCEANS 2016 MTS/IEEE - Monterey, September 2016Google Scholar
  11. 11.
    GIMP. http://www.gimp.org/. Accessed 15 July 2016
  12. 12.
    Ludvigsen, M., Sørensen, A.J.: Towards integrated autonomous underwater operations for ocean mapping and monitoring. Annu. Rev. Control 42, 145–157 (2016)CrossRefGoogle Scholar
  13. 13.
    Nornes, S.M., Ludvigsen, M., Ødegård, Ø., Sørensen, A.J.: Underwater photogrammetric mapping of an intact standing steel wreck with ROV. In: Proceedings of the 4th IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles NGCUV, pp. 206–211, April 2015Google Scholar
  14. 14.
    Nornes, S.M., Ludvigsen, M., Sørensen, A.J.: Automatic relative motion control and photogrammetry mapping on steep underwater walls using ROV. In: OCEANS 2016 MTS/IEEE - Monterey, September 2016Google Scholar
  15. 15.
  16. 16.
    Paull, L., Saeedi, S., Seto, M., Li, H.: Sensor-driven online coverage planning for autonomous underwater vehicles. IEEE/ASME Trans. Mechatron. 18(6), 1827–1838 (2013)CrossRefGoogle Scholar
  17. 17.
    Rossi, M., Scaradozzi, D., Drap, P., Recanatini, P., Dooly, G., Omerdić, E., Toal, D.: Real-time reconstruction of underwater environments: from 2D to 3D. In: OCEANS 2015 - MTS/IEEE Washington, pp. 1–6, October 2015Google Scholar
  18. 18.
    Sørensen, A.J., Dukan, F., Ludvigsen, M., Fernandez, D.A., Candeloro, M.: Development of dynamic positioning and tracking system for the ROV minerva. In: Further Advances in Unmanned Marine Vehicles, pp. 113–128. IET, UK (2012). Chap. 6Google Scholar
  19. 19.
    Vaganay, J., Elkins, M.L., Willcox, S., Hover, F.S., Damus, R.S., Desset, S., Morash, J.P., Polidoro, V.C.: Ship hull inspection by hull-relative navigation and control. In: Proceedings of OCEANS 2005 MTS/IEEE, vol. 1, pp. 761–766 (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stein M. Nornes
    • 1
  • Asgeir J. Sørensen
    • 1
  • Martin Ludvigsen
    • 1
  1. 1.Department of Marine Technology, Centre for Autonomous Marine Operations and Systems (NTNU AMOS)Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations