Coordinated Control of Mobile Robots with Delay Compensation Based on Synchronization

  • Yiran Cao
  • Toshiki Oguchi
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 474)


This chapter considers a consensus control problem for two-wheel mobile robots with input time delay . To solve the problem, an anticipating synchronization-based state predictor is applied to each robot. First, we propose a consensus controller with an angle predictor to compensate the effect of time delay in order to apply feedback linearisation. Then, a consensus condition for this controller is derived and investigated. Extending this idea, a controller with a full state predictor is given and a sufficient condition for consensus is provided. Finally, an example of formation control using the proposed controller for a group of two-wheel mobile robots is given to illustrate the usefulness of the proposed control scheme and the validity of the derived condition.


Prediction Error Mobile Robot Consensus Condition Error Dynamic Full State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ren, W., Beard, R.W: Distributed consensus in multi-vehicle cooperative control. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Listmann, K., Masalawala, M., Adamy, J.: Consensus for formation control of nonholonomic mobile robots. In: IEEE International Conference on Robotics and Automation (2009)Google Scholar
  3. 3.
    Guillet, A., Lenain, R., Thuilot, B., Martinet, P.: Adaptable robot formation control: adaptive and predictive formation control of autonomous vehicles. IEEE Robot. Autom. Mag. 21(1), 28–39 (2014)CrossRefGoogle Scholar
  4. 4.
    Nascimento, T.P., Moreira, A.P., Conceição, A.G.S.: Multi-robot nonlinear model predictive formation control: moving target and target absence. Robot. Auton. Syst. 61(12), 1502–1515 (2013)CrossRefGoogle Scholar
  5. 5.
    Wachter, L.M., Ray, L.E.: Stability of potential function formation control with communication and processing delay. In: American Control Conference, pp. 2997–3004. IEEE (2009)Google Scholar
  6. 6.
    Ferrari, S., Foderaro, G., Zhu, P., Wettergren, T.A.: Distributed optimal control of multiscale dynamical systems: a tutorial. IEEE Control Syst. 36(2), 102–116 (2016)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Antonelli, G., Arrichiello, F., Chiaverini, S.: Flocking for multi-robot systems via the null-space-based behavioral control. Swarm Intell. 4(1), 37–56 (2010)CrossRefGoogle Scholar
  8. 8.
    Moshtagh, N., Jadbabaie, A., Daniilidis, K.: Vision-based control laws for distributed flocking of nonholonomic agents. In: IEEE International Conference on Robotics and Automation, pp. 2769–2774 (2006)Google Scholar
  9. 9.
    Dai, G.B., Liu, Y.C.: Leaderless and leader-following consensus for networked mobile manipulators with communication delays. In: IEEE Conference on Control Applications (CCA), pp. 1656–1661 (2015)Google Scholar
  10. 10.
    Cai, Y., Zhan, Q., Xi, X.: Path tracking control of a spherical mobile robot. Mech. Mach. Theory 51, 58–73 (2012)CrossRefGoogle Scholar
  11. 11.
    Lan, Y., Yan, G., Lin, Z.: Synthesis of distributed control of coordinated path following based on hybrid approach. IEEE Trans. Autom. Control 56(5), 1170–1175 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Olfati-Saber, R., Fax, J.A., Richard, M.: Murray: consensus and cooperation in multi-agent networked systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  14. 14.
    Liu, X., Lu, W., Chen, T.: Consensus of multi-agent systems with unbounded time-varying delays. IEEE Trans. Autom. Control 55(10), 2396–2401 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Sakurama, K., Nakano, K.: Average-consensus problem for networked multi-agent systems with heterogeneous time-delays. IFAC Proc. Vol. 44(1), 2368–2375 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Qiao, W., Sipahi, R.: A linear time-invariant consensus dynamics with homogeneous delays: analytical study and synthesis of rightmost eigenvalues. SIAM J. Control Optim. 51(5), 3971–3992 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Qiao, W., Sipahi, R.: Consensus control under communication delay in a three-robot system: design and experiments. IEEE Trans. Control Syst. Technol. 42(2), 687–694 (2016)CrossRefGoogle Scholar
  18. 18.
    Papachristodoulou, A., Jadbabaie, A., Munz, U.: Effects of delay in multi-agent consensus and oscillator synchronization. IEEE Trans. Autom. Control 55(6), 1471–1477 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Oguchi, T., Nijmeijer, H.: Control of nonlinear systems with time-delay using state predictor based on synchronization. In: The Euromech Nonlinear Dynamics Conference (ENOC), pp. 1150–1156 (2005)Google Scholar
  20. 20.
    Kojima, K., Oguchi, T., Alvarez-Aguirre, A., Nijmeijer, H.: Predictor-based tracking control of a mobile robot with time-delays. In: IFAC Symposium on Nonlinear Control Systems, pp. 167–172 (2010)Google Scholar
  21. 21.
    Alvarez-Aguirre, A., van de Wouw, N., Oguchi, T., Nijmeijer, H.: Predictor-based remote tracking control of a mobile robot. IEEE Trans. Control Syst. Technol. 22(6), 2087–2102 (2014)CrossRefGoogle Scholar
  22. 22.
    Cao, Y., Oguchi, T., Verhoeckx, P.B., Nijmeijer, H.: Predictor-based consensus control of a multi-agent system with time-delays. In: IEEE Conference on Control Applications (CCA), NSW, pp. 113–118 (2015)Google Scholar
  23. 23.
    Cao, Y., Oguchi, T., Verhoeckx, P.B., Nijmeijer, H.: Consensus control for a multiagent system with time delays. Mathematical Problems in Engineering (2017). doi: 10.1155/2017/4063184
  24. 24.
    Dimarogonas, D.V., Kyriakopoulos, K.J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. control 52(5), 916–922 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Sedova, N.O.: The global asymptotic stability and stabilization in nonlinear cascade systems with delay. Russ. Math. 52(11), 60–69 (2008)Google Scholar
  26. 26.
    Gu, K., Chen, J., Kharitonov, V.L.: Stability of Time-Delay Systems. Springer Science and Business Media, New York (2003)Google Scholar
  27. 27.
    Hale, J.K.: Introduction to Functional Differential Equations, vol. 99. Springer Science and Business Media, New York (1993)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Graduate School of Science and EngineeringTokyo Metropolitan UniversityHachioji-shi, TokyoJapan

Personalised recommendations