Advertisement

Robotized Underwater Interventions

  • Giuseppe Casalino
  • Enrico Simetti
  • Francesco Wanderlingh
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 474)

Abstract

Working in underwater environments poses many challenges for robotic systems. One of them is the low bandwidth and high latency of underwater acoustic communications, which limits the possibility of interaction with submerged robots. One solution is to have a tether cable to enable high speed and low latency communications, but that requires a support vessel and increases costs. For that reason, autonomous underwater robots are a very interesting solution. Several research projects have demonstrated autonomy capabilities of Underwater Vehicle Manipulator Systems (UVMS) in performing basic manipulation tasks, and, moving a step further, this chapter will present a unifying architecture for the control of an UVMS, comprehensive of all the control objectives that an UVMS should take into account, their different priorities and the typical mission phases that an UVMS has to tackle. The proposed strategy is supported both by a complete simulated execution of a test-case mission and experimental results.

Keywords

Control Objective Remotely Operate Vehicle Joint Velocity Vehicle Velocity Joint Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the MIUR (Italian Ministry of Education, University and Research) through the MARIS prot. 2010FBLHRJ project and by the European Commission through the H2020-BG-06-2014-635491 DexROV project and the H2020-SC5-2015-690416 ROBUST project.

References

  1. 1.
    Gancet, J., Weiss, P., Antonelli, G., Pfingsthorn, M.F., Calinon, S., Turetta, A., Walen, C., Urbina, D., Govindaraj, S., Letier, P., Martinez, X., Salini, J., Chemisky, B., Indiveri, G., Casalino, G., Di Lillo, P., Simetti, E., De Palma, D., Birk, A., Fromm, T., Mueller, C., Tanwani, A., Havoutis, I., Caffaz, A., L, Guilpain: Dexterous undersea interventions with far distance onshore supervision: the dexrov project. In: 10th IFAC Conference on Control Applications in Marine Systems. IFAC, vol. 49, no. 23, pp. 414–419. Elsevier, Trondheim, Norway (2016)Google Scholar
  2. 2.
    ROBUST website. http://eu-robust.eu (2016). Accessed 25 Oct 2016
  3. 3.
    Yoerger, D.R., Schempf, H., DiPietro, D.M.: Design and performance evaluation of an actively compliant underwater manipulator for full-ocean depth. J. Robot. Syst. 8(3), 371–392 (1991)CrossRefGoogle Scholar
  4. 4.
    Schempf, H., Yoerger, D.: Coordinated vehicle/manipulator design and control issues for underwater telemanipulation. In: Applications in Marine Systems (CAMS 92), Genova, Italy (1992)Google Scholar
  5. 5.
    Lane, D.M., Davies, J.B.C., Casalino, G., Bartolini, G., Cannata, G., Veruggio, G., Canals, M., Smith, C., O’Brien, D.J., Pickett, M., Robinson, G., Jones, D., Scott, E., Ferrara, A., Angelleti, D., Coccoli, M., Bono, R., Virgili, P., Pallas, R., Gracia, E.: Amadeus: advanced manipulation for deep underwater sampling. IEEE Robot. Autom. Mag. 4(4), 34–45 (1997)CrossRefGoogle Scholar
  6. 6.
    Casalino, G., Angeletti, D., Bozzo, T., Marani, G.: Dexterous underwater object manipulation via multi-robot cooperating systems. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp. 3220–3225. IEEE (2001)Google Scholar
  7. 7.
    Rigaud, V., Coste-Manière, È., Aldon, M.-J., Probert, P., Perrier, M., Rives, P., Simon, D., Lang, D., Kiener, J., Casal, A., et al.: Union: underwater intelligent operation and navigation. Robot. Autom. Mag. IEEE 5(1), 25–35 (1998)CrossRefGoogle Scholar
  8. 8.
    Yuh, J., Choi, S., Ikehara, C., Kim, G., McMurty, G., Ghasemi-Nejhad, M., Sarkar, N., Sugihara, K., Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM). In: Proceedings of the 1998 International Symposium on Underwater Technology, pp. 63–68. IEEE, Tokyo, Japan (1998)Google Scholar
  9. 9.
    Marani, G., Choi, S.K., Yuh, J.: Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 36, 15–23 (2008)CrossRefGoogle Scholar
  10. 10.
    Evans, J., Redmond, P., Plakas, C., Hamilton, K., Lane, D.: Autonomous docking for Intervention-AUVs using sonar and video-based real-time 3D pose estimation. In: Oceans 2003, vol. 4, pp. 2201–2210. IEEE (2003)Google Scholar
  11. 11.
    Marty, P., et al.: Alive: An autonomous light intervention vehicle. In: Advances in Technology for Underwater Vehicles Conference. Oceanology International, vol. 2004 (2004)Google Scholar
  12. 12.
    Casalino, G., Zereik, E., Simetti, E., Torelli, S., Sperindé, A., Turetta, A.: A task and subsystem priority based control strategy for underwater floating manipulators. In: IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUV 2012), pp. 170–177, Porto, Portugal (2012)Google Scholar
  13. 13.
    Casalino, G., Zereik, E., Simetti, E., Torelli, S., Sperindé, A., Turetta, A.: Agility for underwater floating manipulation task and subsystem priority based control strategy. In: International Conference on Intelligent Robots and Systems (IROS 2012), pp. 1772–1779, Vilamoura, Portugal (2012)Google Scholar
  14. 14.
    Simetti, E., Casalino, G., Torelli, S., Sperindé, A., Turetta, A.: Experimental results on task priority and dynamic programming based approach to underwater floating manipulation. In: OCEANS 2013. Bergen, Norway (2013)Google Scholar
  15. 15.
    Simetti, E., Casalino, G., Torelli, S., Sperindé, A., Turetta, A.: Floating underwater manipulation: developed control methodology and experimental validation within the trident project. J. Field Robot. 31(3), 364–385 (2014). MayCrossRefGoogle Scholar
  16. 16.
    Casalino, G., Caccia, M., Caiti, A., Antonelli, G., Indiveri, G., Melchiorri, C., Caselli, S.: Maris: A national project on marine robotics for interventions. In: 22nd Mediterranean Conference of Control and Automation (MED). IEEE, 864–869 (2014)Google Scholar
  17. 17.
    Casalino, G., Caccia, M., Caselli, S., Melchiorri, C., Antonelli, G., Caiti, A., Indiveri, G., Cannata, G., Simetti, E., Torelli, S., Sperind, A., Wanderlingh, F., Muscolo, G., Bibuli, M., Bruzzone, G., Zereik, E., Odetti, A., Spirandelli, E., Ranieri, A., Aleotti, J., Lodi Rizzini, D., Oleari, F., Kallasi, F., Palli, G., Moriello, L., Cataldi, E.: Underwater intervention robotics: an outline of the italian national project MARIS. Mar. Technol. Soc. J. 50(4), 98–107 (2016)CrossRefGoogle Scholar
  18. 18.
    Simetti, E., Casalino, G.: Whole body control of a dual arm underwater vehicle manipulator system. Annu. Rev. Control 40, 191–200 (2015)CrossRefGoogle Scholar
  19. 19.
    Manerikar, N., Casalino, G., Simetti, E., Torelli, S., Sperindé, A.: On autonomous cooperative underwater floating manipulation systems. In: International Conference on Robotics and Automation (ICRA 15), pp. 523–528. IEEE, Seattle, WA (2015)Google Scholar
  20. 20.
    Simetti, E., Casalino, G.: Manipulation and transportation with cooperative underwater vehicle manipulator systems. IEEE J. Ocean. Eng. (2016)Google Scholar
  21. 21.
    Di Lillo, P.A., Simetti, E., De Palma, D., Cataldi, E., Indiveri, G., Antonelli, G., Casalino, G.: Advanced rov autonomy for efficient remote control in the DexROV project. Mar. Technol. Soc. J. 50(4), 67–80 (2016)CrossRefGoogle Scholar
  22. 22.
    Ben-Israel, A., Greville, T., Generalized Inverses: Theory and Applications, vol. 15. Springer, Berlin (2003)Google Scholar
  23. 23.
    Perez, T., Fossen, T.I.: Kinematic models for manoeuvring and seakeeping of marine vessels. Model. Identif. Control 28(1), 19–30 (2007)CrossRefGoogle Scholar
  24. 24.
    Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(1), 3–9 (1985)CrossRefGoogle Scholar
  25. 25.
    Siciliano, B., Slotine, J.-J.E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of the Fifth International Advanced Robotics ’Robots in Unstructured Environments’, 91 ICAR. Conference, pp. 1211–1216. IEEE, Pisa, Italy (1991)Google Scholar
  26. 26.
    Simetti, E., Casalino, G.: A novel practical technique to integrate inequality control objectives and task transitions in priority based control. J. Intell. Robot. Syst. 84(1), 877–902 (2016)CrossRefGoogle Scholar
  27. 27.
    Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993)CrossRefGoogle Scholar
  28. 28.
    Mansard, N., Remazeilles, A., Chaumette, F.: Continuity of varying-feature-set control laws. IEEE Trans. Autom. Control 54(11), 2493–2505 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Antonelli, G., Indiveri, G., Chiaverini, S.: Prioritized closed-loop inverse kinematic algorithms for redundant robotic systems with velocity saturations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems: IROS 2009, pp. 5892–5897. IEEE (2009)Google Scholar
  30. 30.
    Whitcomb, L.L., Yoerger, D.R.: Comparative experiments in the dynamics and model-based control of marine thrusters. In: OCEANS, vol. 2, pp. 1019–1028. IEEE (1995)Google Scholar
  31. 31.
    Whitcomb, L.L., Yoerger, D.R.: Preliminary experiments in model-based thruster control for underwater vehicle positioning. IEEE J. Ocean. Eng. 24(4), 495–506 (1999)CrossRefGoogle Scholar
  32. 32.
    Bachmayer, R., Whitcomb, L.L., Grosenbaugh, M.A.: An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation. IEEE J. Ocean. Eng. 25(1), 146–159 (2000)CrossRefGoogle Scholar
  33. 33.
    Rizzini, D.L., Kallasi, F., Oleari, F., Caselli, S.: Investigation of vision-based underwater object detection with multiple datasets. Int. J. Adv. Robot. Syst. 12(77), 1–13 (2015)Google Scholar
  34. 34.
    Simetti, E., Galeano, S., Casalino, G.: Underwater vehicle manipulator systems: control methodologies for inspection and maintenance tasks. In: OCEANS 16. IEEE, Shanghai, China (2016)Google Scholar
  35. 35.
    Yuh, J.: Design and control of autonomous underwater robots: a survey. Auton. Robots 8(1), 7–24 (2000)CrossRefGoogle Scholar
  36. 36.
    Yuh, J., West, M.: Underwater robotics. Adv. Robot. 15(5), 609–639 (2001)CrossRefGoogle Scholar
  37. 37.
    Antonelli, G.: Underwater Robots. Springer Tracts in Advanced Robotics, vol. 96. Springer, Berlin (2014)Google Scholar
  38. 38.
    Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey of underwater vehicle navigation: recent advances and new challenges. In: IFAC Conference of Manoeuvering and Control of Marine Craft, vol. 88 (2006)Google Scholar
  39. 39.
    Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53(3), 263–296 (2008)CrossRefGoogle Scholar
  40. 40.
    Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 11(4), 23–33 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giuseppe Casalino
    • 1
  • Enrico Simetti
    • 1
  • Francesco Wanderlingh
    • 1
  1. 1.DIBRIS, Interuniversity Research Center on Integrated Systems for Marine Environment (ISME)University of GenovaGenovaItaly

Personalised recommendations