Advertisement

Refined Estimates for Exponential Sums and a Problem Concerning the Product of Three L-Series

  • Werner Georg Nowak
Chapter

Abstract

This article deals with estimates for single exponential sums, combining tools from the classic Van der Corput’s theory with an ingredient from M. Huxley’s work. Further, a very precise way of balancing terms is applied with gain. The result obtained is used to derive asymptotic estimates for the coefficients of products of three Dirichlet L-series, as was initiated by Friedlander and Iwaniec (Can. J. Math. 57(3):494–505, 2005).

2010 Mathematics Subject Classification

11M06 11M41 11N37 

References

  1. 1.
    F.V. Atkinson, A divisor problem. Q. J. Math. (Oxford) 12, 193–200 (1941)CrossRefMATHGoogle Scholar
  2. 2.
    E. Bombieri, H. Iwaniec, On the order of \(\zeta (\frac{1} {2} + it)\). Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), IV. Ser., 13, 449–472 (1986)Google Scholar
  3. 3.
    M. Drmota, R.F. Tichy, Sequences, Discrepancies, and Applications. Lecture Notes in Mathematics, vol. 1651 (Springer, Berlin, 1997)Google Scholar
  4. 4.
    J.B. Friedlander, H. Iwaniec, Summation formulae for coefficients of L-functions. Can. J. Math. 57(3), 494–505 (2005)CrossRefMATHGoogle Scholar
  5. 5.
    S.W. Graham, G. Kolesnik, Van der Corput’s Method of Exponential Sums. LMS Lecture Note Series, vol. 126 (Cambridge University Press, Cambridge, 1991)Google Scholar
  6. 6.
    M.N. Huxley, Area, Lattice Points, and Exponential Sums. LMS Monographs, New Series, vol. 13 (Oxford University Press, Oxford, 1996)Google Scholar
  7. 7.
    M.N. Huxley, Exponential sums and lattice points III. Proc. Lond. Math. Soc. (3) 87, 591–609 (2003)Google Scholar
  8. 8.
    M.N. Huxley, Exponential sums and the Riemann zeta-function V. Proc. Lond. Math. Soc. (3) 90, 1–41 (2005)Google Scholar
  9. 9.
    M.N. Huxley, N. Watt, The number of ideals in a quadratic field. Proc. Indian Acad. Sci. Math. Sci. 104, 157–165 (1994)CrossRefMATHGoogle Scholar
  10. 10.
    M.N. Huxley, N. Watt, The number of ideals in a quadratic field. II. Isr. J. Math. 120, 125–153 (2000)CrossRefMATHGoogle Scholar
  11. 11.
    H. Iwaniec, C.J. Mozzochi, On the divisor and circle problems. J. Number Theory 29, 60–93 (1988)CrossRefMATHGoogle Scholar
  12. 12.
    G. Kolesnik, On the estimation of multiple exponential sums, in Recent Progress in Analytic Number Theory I (Academic Press, London, 1981), pp. 231–246Google Scholar
  13. 13.
    E. Krätzel, Lattice Points (Deutscher Verlag der Wissenschaften, Berlin, 1988)MATHGoogle Scholar
  14. 14.
    W. Müller, On the distribution of ideals in cubic number fields. Mh. Math. 106, 211–219 (1988)CrossRefMATHGoogle Scholar
  15. 15.
    W. Müller, W.G. Nowak, Lattice points in domains | x |p + | y |pR p. Arch. Math. (Basel) 51, 55–59 (1988)CrossRefMATHGoogle Scholar
  16. 16.
    W.G. Nowak, Higher order derivative tests for exponential sums incorporating the discrete Hardy-Littlewood method. Acta Math. Hungar. 134, 12–28 (2012)CrossRefMATHGoogle Scholar
  17. 17.
    W.G. Nowak, A problem considered by Friedlander & Iwaniec and the discrete Hardy-Littlewood method. Math. Slovaca 67 (2017), to appearGoogle Scholar
  18. 18.
    B.R. Srinivasan, On the number of Abelian groups of a given order. Acta Arith. 23, 195–205 (1973)MATHGoogle Scholar
  19. 19.
    E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd edn. (Clarendon Press, Oxford, 1986), revised by D.R. Heath-BrownGoogle Scholar
  20. 20.
    J.G. van der Corput, Verschärfung der Abschätzung beim Teilerproblem. Math. Ann. 87, 39–65 (1922)CrossRefMATHGoogle Scholar
  21. 21.
    H. Weyl, Über die Gleichverteilung der Zahlen mod Eins. Math. Ann. 77, 313–352 (1916)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für MathematikUniversität für Bodenkultur (BOKU)WienAustria

Personalised recommendations