Skip to main content

Energy-Autonomous Supply-Sensing Biosensor Platform Using CMOS Electronics and Biofuel Cells

  • Chapter
  • First Online:
  • 1742 Accesses

Abstract

This chapter proposes and presents an energy-autonomous supply-sensing biosensor platform using CMOS electronics and biofuel cells. The proposed supply-sensing biosensor platform is based on biofuel cells and a 0.23-V 0.25-μm zero-V th all-digital CMOS supply-controlled ring oscillator (SCRO) with a current-driven pulse-interval-modulated inductive-coupling transmitter. The fully digital, and current-driven architecture, uses zero-V th transistors, which enables low-voltage operation and a small footprint, even in a cost-competitive legacy CMOS. This enables converterless energy-autonomous operation using a biofuel cell, which is ideal for disposable healthcare applications. To verify the effectiveness of the proposed platform, a test chip was fabricated using 0.25-μm CMOS technology. The experimental results successfully demonstrate operation with a 0.23-V supply, which is the lowest supply voltage reported for proximity transmitters. An energy-autonomous biosensing operation using organic biofuel cells was also successfully demonstrated.

This is a preview of subscription content, log in via an institution.

References

  1. Ogawa, Y., Nishizawa, M., et al.: Organic transdermal iontophoresis patch with built-in biofuel cell. Adv. Healthc. Mater. 4(4), 506–510 (2015)

    Article  Google Scholar 

  2. Rapoport, B.I., et al.: A glucose fuel cell for implantable brain–machine interfaces. PLoS ONE. 7(6), e38436 (2012)

    Article  Google Scholar 

  3. Liao, Y.-T., et al.: A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J. Solid-State Circ. 47(1), 335–344 (2012)

    Article  Google Scholar 

  4. Komori, H., Niitsu, K., Nakazato, K., et al.: An extended-gate CMOS sensor array with enzyme-immobilized microbeads for redox-potential glucose detection. In: IEEE Biomedical Circuits and Systems Conf, pp. 464–467 (2014)

    Google Scholar 

  5. Miura, N., et al.: A 195Gb/s 1.2W 3D-stacked inductive inter-chip wireless superconnect with transmit power control scheme. In: Proc. IEEE ISSCC, pp. 264–265 (2005)

    Google Scholar 

  6. Iwata, A., et al.: A 3D integration scheme utilizing wireless interconnections for implementing hyper brains. In: Proc. IEEE ISSCC, pp. 368–369 (2007)

    Google Scholar 

  7. Miura, N., et al.: A 1 Tb/s 3 W inductive-coupling transceiver for 3D-stacked inter-chip clock and data link. IEEE J. Solid State Circuits. 42(1), 111–122 (2007)

    Article  Google Scholar 

  8. Hopkins, D., et al.: Circuit techniques to enable 430Gb/s/mm2 proximity communication. In: Proc. IEEE ISSCC, pp. 368–369 (2007)

    Google Scholar 

  9. Fazzi, A., et al.: 3D capacitive interconnections with mono- and bi-directional capabilities. In: Proc. IEEE ISSCC, pp. 356–357 (2007)

    Google Scholar 

  10. Gu, Q., et al.: Two 10Gb/s/pin low-power interconnect methods for 3D ICs. In: Proc. IEEE ISSCC, pp. 448–449 (2007)

    Google Scholar 

  11. Daito, M., et al.: Capacitively coupled non-contact probing circuits for membrane-based wafer-level simultaneous testing. In: Proc. IEEE ISSCC, pp. 144–145 (2010)

    Google Scholar 

  12. Niitsu, K., et al.: A 65fJ/b inter-chip inductive-coupling data transceivers using charge-recycling technique for low-power inter-chip communication in 3D system integration. IEEE Trans. Very Large Scale Integration (VLSI) Syst. pp. 1285–1294 (2012)

    Article  Google Scholar 

  13. Niitsu, K., et al.: An inductive-coupling link for 3D integration of a 90nm CMOS processor and a 65nm CMOS SRAM. In: Proc. IEEE ISSCC, pp.480–481 (2009)

    Google Scholar 

  14. Miura, N., et al.: A 0.55 V 10 fJ/bit inductive-coupling data link and 0.7 V 135 fJ/cycle clock link with dual-coil transmission scheme. IEEE J. Solid State Circ., 965–973 (2011)

    Article  Google Scholar 

  15. K. Niitsu, A. Kobayashi, Y. Ogawa, M. Nishizawa, K. Nakazato: An energy-autonomous, disposable, big-data-based supply-sensing biosensor using bio fuel cell and 0.23-V 0.25-μm zero-Vth all-digital CMOS supply-controlled ring oscillator with inductive transmitter. In: Proc. IEEE Biomed. Circ. Syst. Conf. pp. 595–598 (2015)

    Google Scholar 

  16. Niitsu, K., Ota, S., Gamo, K., Kondo, H., Hori, M., Nakazato, K.: Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and HeLa cells. IEEE Trans. Biomed. Circ. Syst. 9(5), 607–619 (2015)

    Article  Google Scholar 

  17. Kuno, T., Niitsu, K., Nakazato, K.: Amperometric electrochemical sensor array for on-chip simultaneous imaging. Jpn. J. Appl. Phys. 53, 04EL01 (7 pages) (2014)

    Article  Google Scholar 

  18. Ishihara, H., Niitsu, K., Nakazato, K.: Analysis and experimental verification of DNA Single Base polymerization detection using CMOS FET-based redox potential sensor Array. Jpn. J. Appl. Phys. 54(4S), 04DL05. (6 pages) (2015)

    Article  Google Scholar 

  19. Niitsu, K., Yoshida, K., Nakazato, K.: Design and experimental demonstration of low-power CMOS magnetic cell manipulation platform using charge recycling technique. Jpn. J. Appl. Phys. 55(3S2), 03DF13. (4 pages) (2016)

    Article  Google Scholar 

  20. Tanaka, S., Niitsu, K., Nakazato, K.: A low-power inverter-based CMOS level-crossing a/D converter for low-frequency biosignal sensing. Jpn. J. Appl. Phys. 55(3S2), 03DF10. (7 pages) (2016)

    Article  Google Scholar 

  21. Yamaji, Y., Niitsu, K., Nakazato, K.: Design and experimental verification of low-voltage two-dimensional CMOS electrophoresis platform with 32×32 sample/hold cell Array. Jpn. J. Appl. Phys. 55(3S2), 03DF07. (5 pages) (2016)

    Article  Google Scholar 

  22. Niitsu, K., Kuno, T., Takihi, M., Nakazato, K.: Well-shaped microelectrode Array structure for high-density CMOS amperometric electrochemical sensor array. IEICE Trans. Electron. E99-C(6), 663–666 (2016)

    Article  Google Scholar 

  23. K. Gamo, K. Niitsu, K. Nakazato: Noise-immune current-integration-based CMOS amperometric sensor platform with 1.2 μm x 2.05 μm electroless-plated microelectrode array for robust bacteria counting. In: Proc. IEEE Biomed. Circ. Syst. Conf. pp. 539–542 (2015)

    Google Scholar 

  24. K. Niitsu, A. Kobayashi, Y. Ogawa, M. Nishizawa, K. Nakazato. An energy-autonomous, disposable, big-data-based supply-sensing biosensor using Bio Fuel Cell and 0.23-V 0.25-μm Zero-Vth all-digital CMOS supply-controlled ring oscillator with inductive transmitter. In: Proc. IEEE Biomed. Circ. Syst. Conf. pp. 595–598 (2015)

    Google Scholar 

  25. S. Ota, K. Niitsu, H. Kondo, M. Hori, K. Nakazato: A CMOS sensor platform with 1.2 μm × 2.05 μm electroless-plated 1024 × 1024 microelectrode array for high-sensitivity rapid direct bacteria counting. In Proc. IEEE Biomedical Circuits and Systems Conf. pp. 460–463 (2014)

    Google Scholar 

  26. Niitsu, K., Sakurai, M., Harigai, N., Yamaguchi, T.J., Kobayashi, H.: CMOS circuits to measure timing jitter using a self-referenced clock and a cascaded time difference amplifier with duty-cycle compensation. IEEE J. Solid State Circuits. 47(11), 2701–2710 (2012)

    Article  Google Scholar 

  27. Niitsu, K., Harigai, N., Yamaguchi, T.J., Kobayashi, H.: A feed-forward time amplifier using phase detector and variable delay line. IEICE Trans. Electron. E96-C(6), 920–922 (2013)

    Article  Google Scholar 

  28. Niitsu, K., Harigai, N., Kobayashi, H.: Design methodology for determining the number of stages in a cascaded time amplifier to minimize area consumption. IEICE Electron. Exp. 10(11), 20130289 (2013)

    Article  Google Scholar 

  29. Niitsu, K., Harigai, N., Yamaguchi, T.J., Kobayashi, H.: A low-offset cascaded time amplifier with reconfigurable inter-stage connection. IEICE Electron. Exp. 11(10), 20140203 (2014)

    Article  Google Scholar 

  30. Niitsu, K., Osawa, Y., Hirabayashi, D., Kobayashi, O., Yamaguchi, T.J., Kobayashi, H.: A CMOS PWM transceiver using self-referenced edge detection. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 23(6), 1145–1149 (2015)

    Article  Google Scholar 

  31. Niitsu, K., Kang, S., Kulkarni, V.V., Ishikuro, H., Kuroda, T.: A 14 GHz AC-coupled clock distribution scheme with phase averaging technique using Sigle LC-VCO and distributed phase interpolators. IEEE Trans. Very Large Scale Integr (VLSI) Syst. (TVLSI). 19(11), 2058–2066 (2011)

    Article  Google Scholar 

  32. Niitsu, K., Sugimori, Y., Kohama, Y., Osada, K., Irie, N., Ishikuro, H., Kuroda, T.: Analysis and techniques for mitigating interference from power/signal lines and to SRAM circuits in CMOS inductive-coupling link for low-power 3D system integration. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 19(10), 1902–1907 (2011)

    Article  Google Scholar 

  33. Niitsu, K., Kohama, Y., Sugimori, Y., Kasuga, K., Osada, K., Irie, N., Ishikuro, H., Kuroda, T.: Modeling and experimental verification of misalignment tolerance in inductive-coupling inter-Chip link for low-power 3D system integration. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 18(8), 1238–1243 (2010)

    Article  Google Scholar 

  34. Saen, M., Osada, K., Okuma, Y., Niitsu, K., Shimazaki, Y., Sugimori, Y., Kohama, Y., Kasuga, K., Nonomura, I., Irie, N., Hattori, T., Hasegawa, A., Kuroda, T.: 3-D system integration of processor and multi-stacked SRAMs using inductive-coupling link. IEEE J. Solid-State Circ. 45(4), 856–862 (2010)

    Article  Google Scholar 

  35. Niitsu, K., Yuxiang, Y., Ishikuro, H., Kuroda, T.: A 33% improvement in efficiency of wireless inter-chip power delivery by thin film magnetic material for three-dimensional system integration. Jpn. J. Appl. Phys. 48, 04C073. (5 pages) (2009)

    Article  Google Scholar 

  36. Niitsu, K., Miura, N., Inoue, M., Nakagawa, Y.O., Tago, M., Mizuno, M., Sakurai, T., Kuroda, T.: Daisy chain transmitter for power reduction in inductive-coupling CMOS link. IEICE Trans. Electron. E90-C(4), 829–835 (2007)

    Article  Google Scholar 

  37. Niitsu, K., Miura, N., Inoue, M., Nakagawa, Y., Tago, M., Mizuno, M., Ishikuro, H., Kuroda, T.: 60% power reduction in inductive-coupling inter-Chip link by current-sensing technique. Jpn. J. Appl. Phys. 46(4B), 2215–2219 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by JST, PRESTO, by a Grant-in-Aid for Scientific Research (S) (Nos. 20226009, 25220906, 26220801), Grants-in-Aid for Young Scientists (A) (No. 16H06088) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Strategic Information and Communications R&D Promotion Programme (Nos. 121806006, 152106004) of the Ministry of Internal Affairs and Communications, Japan, by TOYOTA RIKEN, and by The Nitto Foundation. The fabrication of CMOS chips was supported by Taiwan Semiconductor Manufacturing Co., Ltd. (TSMC, Taiwan), and the VLSI Design and Education Center (VDEC), University of Tokyo in collaboration with Synopsys, Inc. and Cadence Design Systems, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiichi Niitsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Niitsu, K. (2017). Energy-Autonomous Supply-Sensing Biosensor Platform Using CMOS Electronics and Biofuel Cells. In: Yasuura, H., Kyung, CM., Liu, Y., Lin, YL. (eds) Smart Sensors at the IoT Frontier . Springer, Cham. https://doi.org/10.1007/978-3-319-55345-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55345-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55344-3

  • Online ISBN: 978-3-319-55345-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics