Skip to main content

Spatial Prediction of Landslides Along Jalan Kota in Bandar Seri Begawan (Brunei) Using Airborne LiDAR Data and Support Vector Machine

Abstract

A landslide is one of the most dangerous natural hazards that can cause considerable damage to human life and properties (Yin et al. 2009; Pradhan and Lee 2010; Jebur et al. 2014).

Keywords

  • Support Vector Machine
  • Radial Basis Function
  • Analytic Hierarchy Process
  • Landslide Susceptibility
  • Area Under Curve

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   164.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5

References

  • Akgun, A., Sezer, E. A., Nefeslioglu, H. A., Gokceoglu, C., & Pradhan, B. (2012). An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers & Geosciences, 38(1), 23–34.

    CrossRef  Google Scholar 

  • Ali, S., & Smith, K. A. (2003). Automatic parameter selection for polynomial kernel. In: Information Reuse and Integration, 2003. IRI 2003. IEEE International Conference on (pp. 243-249). IEEE.

    Google Scholar 

  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, Central Japan. Geomorphology, 65(1), 15–31.

    CrossRef  Google Scholar 

  • Baeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26(12), 1251–1263.

    CrossRef  Google Scholar 

  • Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide susceptibility mapping: The Staffora river basin case study, Italy. Mathematical Geosciences, 44(1), 47–70.

    CrossRef  Google Scholar 

  • Barredo, J., Benavides, A., Hervás, J., & van Westen, C. J. (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2(1), 9–23.

    CrossRef  Google Scholar 

  • Belousov, A., Verzakov, S., & Von Frese, J. (2002). Applicational aspects of support vector machines. Journal of Chemometrics, 16(8–10), 482–489.

    CrossRef  CAS  Google Scholar 

  • Bonham-Carter, G. (1994). Geographic information systems for geoscientists: Modelling with GIS (Vol. 13). UK: Elsevier.

    Google Scholar 

  • Brenning, A. (2005). Spatial prediction models for landslide hazards: Review, comparison and evaluation. Natural Hazards and Earth System Science, 5(6), 853–862.

    CrossRef  Google Scholar 

  • Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, Ø. B. (2013). Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Natural Hazards, 66(2), 707–730.

    CrossRef  Google Scholar 

  • Chacón, J., Irigaray, C., Fernandez, T., & El Hamdouni, R. (2006). Engineering geology maps: Landslides and geographical information systems. Bulletin of Engineering Geology and the Environment, 65(4), 341–411.

    CrossRef  Google Scholar 

  • Chau, K., Wu, C., & Li, Y. (2005). Comparison of several flood forecasting models in Yangtze River. Journal of Hydrologic Engineering, 10(6), 485–491.

    CrossRef  Google Scholar 

  • Chen, F.-W., & Liu, C.-W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222.

    CrossRef  Google Scholar 

  • Chi, K. -H., Park, N. -W., & Chung, C. -J. (2002). Fuzzy logic integration for landslide hazard mapping using spatial data from Boeun, Korea. International archives of photogrammetry remote sensing and spatial information sciences, 34(4), 54–59.

    Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Cui, X., Zhao, X., Ji, M., Wang, S., & Zhang, P. (2010). Research on landslide prediction based on support vector model. In: Computer Design and Applications (ICCDA), 2010 International Conference on (Vol. 3, pp. V3-540–V543-544): IEEE.

    Google Scholar 

  • Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213–228.

    CrossRef  Google Scholar 

  • Damaševičius, R. (2010). Optimization of SVM parameters for recognition of regulatory DNA sequences. Top, 18(2), 339–353.

    CrossRef  Google Scholar 

  • Ghalkhani, H., Golian, S., Saghafian, B., Farokhnia, A., & Shamseldin, A. (2013). Application of surrogate artificial intelligent models for real-time flood routing. Water and Environment Journal, 27(4), 535–548.

    CrossRef  Google Scholar 

  • Gokceoglu, C., & Sezer, E. (2009). A statistical assessment on international landslide literature (1945–2008). Landslides, 6(4), 345–351.

    CrossRef  Google Scholar 

  • Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Detection of vertical slope movement in highly vegetated tropical area of Gunung pass landslide, Malaysia, using L-band InSAR technique. Geosciences Journal, 18(1), 61–68.

    CrossRef  Google Scholar 

  • Konadu, D., & Fosu, C. (2009). Digital elevation models and GIS for watershed modelling and flood prediction–a case study of Accra Ghana. In: Appropriate Technologies for Environmental Protection in the Developing World (pp. 325–332). The Netherlands: Springer.

    Google Scholar 

  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.

    CrossRef  Google Scholar 

  • Lifeng, Y., & Youshui, Z. (2006). Debris flow hazard assessment based on support vector machine. Wuhan University Journal of Natural Sciences, 11(4), 897–900.

    CrossRef  Google Scholar 

  • Lineback Gritzner, M., Marcus, W. A., Aspinall, R., & Custer, S. G. (2001). Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology, 37(1), 149–165.

    CrossRef  Google Scholar 

  • Liu, Y., & De Smedt, F. (2005). Flood modeling for complex terrain using GIS and remote sensed information. Water Resources Management, 19(5), 605–624.

    CrossRef  Google Scholar 

  • Magliulo, P., Di Lisio, A., Russo, F., & Zelano, A. (2008). Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: A case study in southern Italy. Natural Hazards, 47(3), 411–435.

    CrossRef  Google Scholar 

  • Marjanović, M., Kovačević, M., Bajat, B., & Voženílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123(3), 225–234.

    CrossRef  Google Scholar 

  • Micheletti, N., Foresti, L., Kanevski, M., Pedrazzini, A., & Jaboyedoff, M. (2011). Landslide susceptibility mapping using adaptive support vector machines and feature selection (Master Thesis submitted to University of Lausanne Faculty of Geosciences and Environment for the Degree of Master of Science in Environmental Geosciences, 99p).

    Google Scholar 

  • Mu, T., & Nandi, A. K. (2007). Breast cancer detection from FNA using SVM with different parameter tuning systems and SOM–RBF classifier. Journal of the Franklin Institute, 344(3), 285–311.

    CrossRef  Google Scholar 

  • Oh, H.-J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264–1276.

    CrossRef  Google Scholar 

  • Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464.

    CrossRef  Google Scholar 

  • Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349–369.

    CrossRef  Google Scholar 

  • Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71–84.

    CrossRef  Google Scholar 

  • Pozdnoukhov, A. (2009). Machine learning for spatial environmental data: Theory, applications, and software. Switzerland: EPFL press.

    Google Scholar 

  • Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320.

    CrossRef  Google Scholar 

  • Pradhan, B. (2011). Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environmental Earth Sciences, 63(2), 329–349.

    CrossRef  Google Scholar 

  • Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.

    CrossRef  Google Scholar 

  • Pradhan, B., & Buchroithner, M. F. (2010). Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environmental and Engineering Geoscience, 16(2), 107–126.

    CrossRef  Google Scholar 

  • Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.

    CrossRef  Google Scholar 

  • Ramani, S. E., Pitchaimani, K., & Gnanamanickam, V. R. (2011). GIS based landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal, India using binary logistic regression analysis. Journal of Mountain Science, 8(4), 505–517.

    CrossRef  Google Scholar 

  • Regmi, A. D., Yoshida, K., Pourghasemi, H. R., DhitaL, M. R., & Pradhan, B. (2014). Landslide susceptibility mapping along Bhalubang—Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. Journal of Mountain Science, 11(5), 1266–1285.

    CrossRef  Google Scholar 

  • Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1), 172–187.

    CrossRef  Google Scholar 

  • Samui, P. (2008). Slope stability analysis: A support vector machine approach. Environmental Geology, 56(2), 255–267.

    CrossRef  Google Scholar 

  • Sarkar, S., Kanungo, D. P., Patra, A., & Kumar, P. (2008). GIS based spatial data analysis for landslide susceptibility mapping. Journal of Mountain Science, 5(1), 52–62.

    CrossRef  Google Scholar 

  • Song, S., Zhan, Z., Long, Z., Zhang, J., & Yao, L. (2011). Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data. PLoS ONE, 6(2), e17191.

    CrossRef  CAS  Google Scholar 

  • Subramanian, N., & Ramanathan, R. (2012). A review of applications of analytic hierarchy process in operations management. International Journal of Production Economics, 138(2), 215–241.

    CrossRef  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.

    CrossRef  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering, 2012(974638), 26.

    Google Scholar 

  • Tilmant, A., Vanclooster, M., Duckstein, L., & Persoons, E. (2002). Comparison of fuzzy and nonfuzzy optimal reservoir operating policies. Journal of Water Resources Planning and Management, 128(6), 390–398.

    CrossRef  Google Scholar 

  • Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.

    CrossRef  Google Scholar 

  • Van Westen, C. J. (2000). The modelling of landslide hazards using GIS. Surveys In Geophysics, 21(2–3), 241–255.

    CrossRef  Google Scholar 

  • Wan, S., & Lei, T. C. (2009). A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan. Knowledge-Based Systems, 22(8), 580–588.

    CrossRef  Google Scholar 

  • Wang, Y.-T., Seijmonsbergen, A. C., Bouten, W., & Chen, Q.-T. (2015). Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science, 12(2), 268–288.

    CrossRef  Google Scholar 

  • Westen, C. V., & Terlien, M. (1996). An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms, 21(9), 853–868.

    Google Scholar 

  • Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.

    CrossRef  Google Scholar 

  • Yao, X., Tham, L., & Dai, F. (2008). Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China. Geomorphology, 101(4), 572–582.

    CrossRef  Google Scholar 

  • Yilmaz, I. (2009). A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bulletin of Engineering Geology and the Environment, 68(3), 297–306.

    CrossRef  Google Scholar 

  • Yin, Y., Wang, F., & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6(2), 139–152.

    CrossRef  Google Scholar 

  • Youssef, A. M., Pradhan, B., Pourghasemi, H. R., & Abdullahi, S. (2015). Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS. Geosciences Journal, 1–21.

    Google Scholar 

  • Zhu, X., Zhang, S., Jin, Z., Zhang, Z., & Xu, Z. (2011). Missing value estimation for mixed-attribute data sets. Knowledge and Data Engineering, IEEE Transactions on, 23(1), 110–121.

    CrossRef  Google Scholar 

  • Zhuang, L., & Dai, H. (2006). Parameter optimization of kernel-based one-class classifier on imbalance learning. Journal of Computers, 1(7), 32–40.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pradhan, B., Jebur, M.N., Abdullahi, S. (2017). Spatial Prediction of Landslides Along Jalan Kota in Bandar Seri Begawan (Brunei) Using Airborne LiDAR Data and Support Vector Machine. In: Pradhan, B. (eds) Laser Scanning Applications in Landslide Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-55342-9_9

Download citation