Skip to main content

Mitochondrial Mechanosensor Microdomains in Cardiovascular Disorders

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

The cardiomyocytes populating the ‘working myocardium’ are highly organized and such organization ranges from macroscale (e.g. the geometrical rod shape) to microscale (dyad/t-tubules) domains. This meticulous level of organization is imperative for assuring the normal and physiological pump-function of the heart. In the pathological cardiac tissue, the domains-related architecture is partially lost, resulting in morphological, electrical and metabolic remodeling and promoting cardiovascular diseases including heart failure and arrhythmias. Indeed, arrhythmogenesis during heart failure is a major clinical problem. Arrhythmias have been extensively studied from an electrical etiology, but only recently, physiologists and scientists have focused their attention on cellular and subcellular mechanosensors. We and others have investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. This chapter highlights the recent findings in the field, especially the role of mitochondria function and alignment in failing cardiomyocytes interrogated via nanomechanical stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Link MS, Wang PJ, Pandian NG, Bharati S, Udelson JE, Lee MY, Vecchiotti MA, Vander Brink BA, Mirra G, Maron BJ, Estes 3rd NA. An experimental model of sudden death due to low-energy chest-wall impact (commotio cordis). N Engl J Med. 1998;338:1805–11.

    Article  CAS  PubMed  Google Scholar 

  2. Ait-Mou Y, Hsu K, Farman GP, Kumar M, Greaser ML, Irving TC, de Tombe PP. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proc Natl Acad Sci U S A. 2016;113:2306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moss RL, Fitzsimons DP. Frank-Starling relationship: long on importance, short on mechanism. Circ Res. 2002;90:11–3.

    Article  CAS  PubMed  Google Scholar 

  4. Fassina L, Rozzi G, Rossi S, Scacchi S, Galetti M, Lo Muzio FP, Del Bianco F, Colli Franzone P, Petrilli G, Faggian G, Miragoli M. Cardiac kinematic parameters computed from video of in situ beating heart. Sci Rep. 2017;7:46143 doi:10.1038/srep46143.

  5. Kiseleva I, Kamkin A, Wagner KD, Theres H, Ladhoff A, Scholz H, Gunther J, Lab MJ. Mechanoelectric feedback after left ventricular infarction in rats. Cardiovasc Res. 2000;45:370–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lammerding J, Kamm RD, Lee RT. Mechanotransduction in cardiac myocytes. Ann N Y Acad Sci. 2004;1015:53–70.

    Article  PubMed  Google Scholar 

  7. Kohlhaas M, Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res. 2013;98:259–68.

    Article  CAS  PubMed  Google Scholar 

  8. Miragoli M, Sanchez-Alonso JL, Bhargava A, Wright PT, Sikkel M, Schobesberger S, Diakonov I, Novak P, Castaldi A, Cattaneo P, Lyon AR, Lab MJ, Gorelik J. Microtubule-dependent mitochondria alignment regulates calcium release in response to nanomechanical stimulus in heart myocytes. Cell Rep. 2016;14:140–51.

    Article  CAS  PubMed  Google Scholar 

  9. Kim SJ, Iizuka K, Kelly RA, Geng YJ, Bishop SP, Yang G, Kudej A, McConnell BK, Seidman CE, Seidman JG, Vatner SF. An alpha-cardiac myosin heavy chain gene mutation impairs contraction and relaxation function of cardiac myocytes. Am J Physiol. 1999;276:H1780–7.

    CAS  PubMed  Google Scholar 

  10. Borg TK, Goldsmith EC, Price R, Carver W, Terracio L, Samarel AM. Specialization at the Z line of cardiac myocytes. Cardiovasc Res. 2000;46:277–85.

    Article  CAS  PubMed  Google Scholar 

  11. Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell. 2002;111:943–55.

    Article  CAS  PubMed  Google Scholar 

  12. Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ, Korchev YE, Harding SE, Gorelik J. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A. 2009;106:6854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janmey PA, Miller RT. Mechanisms of mechanical signaling in development and disease. J Cell Sci. 2011;124:9–18.

    Article  CAS  PubMed  Google Scholar 

  14. Ferreira-Cornwell MC, Luo Y, Narula N, Lenox JM, Lieberman M, Radice GL. Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J Cell Sci. 2002;115:1623–34.

    CAS  PubMed  Google Scholar 

  15. Yancey DM, Guichard JL, Ahmed MI, Zhou L, Murphy MP, Johnson MS, Benavides GA, Collawn J, Darley-Usmar V, Dell’Italia LJ. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am J Physiol Heart Circ Physiol. 2015;308:H651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santulli G, Marks AR. Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol. 2015;8:206–22.

    Article  CAS  PubMed  Google Scholar 

  17. Yang D, Wang T, Ni Y, Song B, Ning F, Hu P, Luo L, Wang Y, Ma A. Apamin-sensitive K+ current upregulation in volume-overload heart failure is associated with the decreased interaction of CK2 with SK2. J Membr Biol. 2015;248:1181–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kuwahara K, Nakao K. New molecular mechanisms for cardiovascular disease: transcriptional pathways and novel therapeutic targets in heart failure. J Pharmacol Sci. 2011;116:337–42.

    Article  CAS  PubMed  Google Scholar 

  19. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science. 2010;327:1653–7.

    Article  CAS  PubMed  Google Scholar 

  20. Jeyaraj D, Wan X, Ficker E, Stelzer JE, Deschenes I, Liu H, Wilson LD, Decker KF, Said TH, Jain MK, Rudy Y, Rosenbaum DS. Ionic bases for electrical remodeling of the canine cardiac ventricle. Am J Physiol Heart Circ Physiol. 2013;305:H410–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rowell J, Koitabashi N, Kass DA, Barth AS. Dynamic gene expression patterns in animal models of early and late heart failure reveal biphasic-bidirectional transcriptional activation of signaling pathways. Physiol Genomics. 2014;46:779–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol. 2005;289:C994–C1001.

    Article  CAS  PubMed  Google Scholar 

  23. Lesnefsky EJ, Tandler B, Ye J, Slabe TJ, Turkaly J, Hoppel CL. Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Physiol. 1997;273:H1544–54.

    CAS  PubMed  Google Scholar 

  24. Rosca MG, Hoppel CL. Mitochondrial dysfunction in heart failure. Heart Fail Rev. 2013;18:607–22.

    Article  CAS  PubMed  Google Scholar 

  25. Rosca MG, Tandler B, Hoppel CL. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol. 2013;55:31–41.

    Article  CAS  PubMed  Google Scholar 

  26. Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol. 2013;4:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dague E, Genet G, Lachaize V, Guilbeau-Frugier C, Fauconnier J, Mias C, Payre B, Chopinet L, Alsteens D, Kasas S, Severac C, Thireau J, Heymes C, Honton B, Lacampagne A, Pathak A, Senard JM, Gales C. Atomic force and electron microscopic-based study of sarcolemmal surface of living cardiomyocytes unveils unexpected mitochondrial shift in heart failure. J Mol Cell Cardiol. 2014;74:162–72.

    Article  CAS  PubMed  Google Scholar 

  28. Ter Keurs HE, Wakayama Y, Sugai Y, Price G, Kagaya Y, Boyden PA, Miura M, Stuyvers BD. Role of sarcomere mechanics and Ca2+ overload in Ca2+ waves and arrhythmias in rat cardiac muscle. Ann N Y Acad Sci. 2006;1080:248–67.

    Google Scholar 

  29. Belmonte S, Morad M. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes. Ann N Y Acad Sci. 2008;1123:58–63.

    Article  CAS  PubMed  Google Scholar 

  30. Chaanine AH, Kohlbrenner E, Gamb SI, Guenzel AJ, Klaus KA, Fayyaz AU, Nair KS, Hajjar RJ, Redfield MM. FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics and function in cardiac stress. Am J Physiol Heart Circ Physiol. 2016;311:H1540. ajpheart 00549 2016

    Article  PubMed  Google Scholar 

  31. Doenst T, Pytel G, Schrepper A, Amorim P, Farber G, Shingu Y, Mohr FW, Schwarzer M. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. 2010;86:461–70.

    Article  CAS  PubMed  Google Scholar 

  32. Sharov VG, Todor AV, Silverman N, Goldstein S, Sabbah HN. Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol. 2000;32:2361–7.

    Article  CAS  PubMed  Google Scholar 

  33. Miragoli M, Yacoub MH, El-Hamamsy I, Sanchez-Alonso JL, Moshkov A, Mongkoldhumrongkul N, Padala M, Paramagurunathan S, Sarathchandra P, Korchev YE, Gorelik J, Chester AH. Side-specific mechanical properties of valve endothelial cells. Am J Physiol Heart Circ Physiol. 2014;307:H15–24.

    Article  CAS  PubMed  Google Scholar 

  34. Novak P, Shevchuk A, Ruenraroengsak P, Miragoli M, Thorley AJ, Klenerman D, Lab MJ, Tetley TD, Gorelik J, Korchev YE. Imaging single nanoparticle interactions with human lung cells using fast ion conductance microscopy. Nano Lett. 2014;14:1202–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sharov VG, Todor A, Khanal S, Imai M, Sabbah HN. Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol. 2007;42:150–8.

    Article  CAS  PubMed  Google Scholar 

  36. Rusconi F, Ceriotti P, Miragoli M, Carullo P, Salvarani N, Rocchetti M, Di Pasquale E, Rossi S, Tessari M, Caprari S, Cazade M, Kunderfranco P, Chemin J, Bang ML, Polticelli F, Zaza A, Faggian G, Condorelli G, Catalucci D. Peptidomimetic targeting of cavbeta2 overcomes dysregulation of the L-type calcium channel density and recovers cardiac function. Circulation. 2016;134:534–46.

    Article  CAS  PubMed  Google Scholar 

  37. Belmonte S, Morad M. ‘Pressure-flow’-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria. J Physiol. 2008;586:1379–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knowlton AA, Chen L, Malik ZA. Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol. 2014;63:196–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kombairaju P, Kerr JP, Roche JA, Pratt SJ, Lovering RM, Sussan TE, Kim JH, Shi G, Biswal S, Ward CW. Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle. Front Physiol. 2014;5:57.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY, Margulies KB, Shenoy VB, Prosser BL. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science. 2016;352:aaf0659.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roos KP, Palmer RE, Miller TW. The role of microtubules in structural remodeling and the progression to heart failure. J Card Fail. 2002;8:S300–10.

    Article  PubMed  Google Scholar 

  42. Saetersdal T, Greve G, Dalen H. Associations between beta-tubulin and mitochondria in adult isolated heart myocytes as shown by immunofluorescence and immunoelectron microscopy. Histochemistry. 1990;95:1–10.

    Article  CAS  PubMed  Google Scholar 

  43. Kuznetsov AV, Javadov S, Guzun R, Grimm M, Saks V. Cytoskeleton and regulation of mitochondrial function: the role of beta-tubulin II. Front Physiol. 2013;4:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol. 2008;97:163–79.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Grand T, Salvarani N, Jousset F, Rohr S. Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress. Cardiovasc Res. 2014;104:489–500.

    Article  CAS  PubMed  Google Scholar 

  46. Biesiadecki BJ, Davis JP, Ziolo MT, Janssen PM. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. Biophys Rev. 2014;6:273–89.

    Article  CAS  PubMed Central  Google Scholar 

  47. Stohr A, Friedrich FW, Flenner F, Geertz B, Eder A, Schaaf S, Hirt MN, Uebeler J, Schlossarek S, Carrier L, Hansen A, Eschenhagen T. Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice. J Mol Cell Cardiol. 2013;63:189–98.

    Article  PubMed  Google Scholar 

  48. Lorin C, Vogeli I, Niggli E. Dystrophic cardiomyopathy: role of TRPV2 channels in stretch-induced cell damage. Cardiovasc Res. 2015;106:153–62.

    Article  CAS  PubMed  Google Scholar 

  49. ter Keurs HE, Zhang YM, Davidoff AW, Boyden PA, Wakayama Y, Miura M. Damage induced arrhythmias: mechanisms and implications. Can J Physiol Pharmacol. 2001;79:73–81.

    Article  PubMed  Google Scholar 

  50. Traaseth N, Elfering S, Solien J, Haynes V, Giulivi C. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochim Biophys Acta. 1658;2004:64–71.

    Google Scholar 

  51. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  CAS  PubMed  Google Scholar 

  52. Glancy B, Willis WT, Chess DJ, Balaban RS. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013;52:2793–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoffman NE, Miller BA, Wang J, Elrod JW, Rajan S, Gao E, Song J, Zhang XQ, Hirschler-Laszkiewicz I, Shanmughapriya S, Koch WJ, Feldman AM, Madesh M, Cheung JY. Ca(2)(+) entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. Am J Physiol Heart Circ Physiol. 2015;308:H637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nickel A, Loffler J, Maack C. Myocardial energetics in heart failure. Basic Res Cardiol. 2013;108:358.

    Article  PubMed  Google Scholar 

  55. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nowak G. Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J Biol Chem. 2002;277:43377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Denton RM, McCormack JG, Edgell NJ. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980;190:107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu T, O’Rourke B. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. J Bioenerg Biomembr. 2009;41:127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol. 2013;15:1464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luongo TS, Lambert JP, Yuan A, Zhang X, Gross P, Song J, Shanmughapriya S, Gao E, Jain M, Houser SR, Koch WJ, Cheung JY, Madesh M, Elrod JW. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 2015;12:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tse G, Yan BP, Chan YW, Tian XY, Huang Y. Reactive oxygen species. Endoplasmic reticulum stress mitochondrial dysfunction: the link card arrhythmogenesis. Front Physiol. 2016;7:313.

    PubMed  PubMed Central  Google Scholar 

  62. Seddon M, Shah AM, Casadei B. Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res. 2007;75:315–26.

    Article  CAS  PubMed  Google Scholar 

  63. Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA, Wilson GM, Di Benedetto G, O’Rourke B, Gao WD, Wink DA, Toscano JP, Zaccolo M, Bers DM, Valdivia HH, Cheng H, Kass DA, Paolocci N. Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling. Circ Res. 2007;100:96–104.

    Article  CAS  PubMed  Google Scholar 

  64. Cabassi A, Dancelli S, Pattoneri P, Tirabassi G, Quartieri F, Moschini L, Cavazzini S, Maestri R, Lagrasta C, Graiani G, Corradi D, Parenti E, Tedeschi S, Cremaschi E, Coghi P, Vinci S, Fiaccadori E, Borghetti A. Characterization of myocardial hypertrophy in prehypertensive spontaneously hypertensive rats: interaction between adrenergic and nitrosative pathways. J Hypertens. 2007;25:1719–30.

    Article  CAS  PubMed  Google Scholar 

  65. Cabassi A, Binno SM, Tedeschi S, Ruzicka V, Dancelli S, Rocco R, Vicini V, Coghi P, Regolisti G, Montanari A, Fiaccadori E, Govoni P, Piepoli M, de Champlain J. Low serum ferroxidase I activity is associated with mortality in heart failure and related to both peroxynitrite-induced cysteine oxidation and tyrosine nitration of ceruloplasmin. Circ Res. 2014;114:1723–32.

    Article  CAS  PubMed  Google Scholar 

  66. Cabassi A, Binno SM, Tedeschi S, Graiani G, Galizia C, Bianconcini M, Coghi P, Fellini F, Ruffini L, Govoni P, Piepoli M, Perlini S, Regolisti G, Fiaccadori E. Myeloperoxidase-related chlorination activity is positively associated with circulating ceruloplasmin in chronic heart failure patients: relationship with neurohormonal, inflammatory, and nutritional parameters. Biomed Res Int. 2015;2015:691693.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Wang W, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H. Superoxide flashes in single mitochondria. Cell. 2008;134:279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 1757;2006:509–17.

    Google Scholar 

  69. Zhang H, Gomez AM, Wang X, Yan Y, Zheng M, Cheng H. ROS regulation of microdomain Ca(2+) signalling at the dyads. Cardiovasc Res. 2013;98:248–58.

    Article  CAS  PubMed  Google Scholar 

  70. Lancel S, Qin F, Lennon SL, Zhang J, Tong X, Mazzini MJ, Kang YJ, Siwik DA, Cohen RA, Colucci WS. Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice. Circ Res. 2010;107:228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharma A, Fonarow GC, Butler J, Ezekowitz JA, Felker GM. Coenzyme Q10 and heart failure: a state-of-the-art review. Circ-Heart Fail. 2016;9:e002639.

    Article  CAS  PubMed  Google Scholar 

  72. Jahng JWS, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med. 2016;48:e217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang W, Karamanlidis G, Tian R. Novel targets for mitochondrial medicine. Sci Transl Med. 2016;8:326rv3.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Spat A, Fulop L, Koncz P, Szanda G. When is high-Ca2+ microdomain required for mitochondrial Ca2+ uptake? Acta Physiol. 2009;195:139–47.

    Article  CAS  Google Scholar 

  75. Goldenthal MJ. Mitochondrial involvement in myocyte death and heart failure. Heart Fail Rev. 2016;21:137–55.

    Article  CAS  PubMed  Google Scholar 

  76. Wasson S, Reddy HK, Dohrmann ML. Current perspectives of electrical remodeling and its therapeutic implications. J Cardiovasc Pharm Ther. 2004;9:129–44.

    Article  CAS  Google Scholar 

  77. Adamson PB, Barr RC, Callans DJ, Chen P-S, Lathrop DA, Makielski JC, Nerbonne JM, Nuss HB, Olgin JE, Przywara DA, Rosen MR, Rozanski GJ, Spach MS, Yamada KA. The perplexing complexity of cardiac arrhythmias: beyond electrical remodeling. Heart Rhythm. 2005;2:650.

    Article  PubMed  Google Scholar 

  78. Li Q, Pogwizd SM, Prabhu SD, Zhou LF. Inhibiting Na+/K+ ATPase can impair mitochondrial energetics and induce abnormal Ca2+ cycling and automaticity in Guinea pig cardiomyocytes. PLoS One. 2014;9:e93928.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fu Y, Shaw SA, Naami R, Vuong CL, Basheer WA, Guo XQ, Hong TT. Isoproterenol promotes rapid ryanodine receptor movement to Bridging Integrator 1 (BIN1)-organized dyads. Circulation. 2016;133:388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sanchez-Alonso JL, Bhargava A, O’Hara T, Glukhov AV, Schobesberger S, Bhogal N, Sikkel MB, Mansfield C, Korchev YE, Lyon AR, Punjabi PP, Nikolaev VO, Trayanova NA, Gorelik J. Microdomain-specific modulation of L-type calcium channels leads to triggered ventricular arrhythmia in heart failure. Circ Res. 2016;119:944–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao J, Lendahl U, Nister M. Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cell Mol Life Sci. 2013;70:951–76.

    Article  CAS  PubMed  Google Scholar 

  82. Hayakawa K, Esposito E, Wang XH, Terasaki Y, Liu Y, Xing CH, Ji XM, Lo EH. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535:551–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Miragoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Miragoli, M., Cabassi, A. (2017). Mitochondrial Mechanosensor Microdomains in Cardiovascular Disorders. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_13

Download citation

Publish with us

Policies and ethics