Skip to main content

Cellulosic Graft Copolymers

  • Chapter
  • First Online:
Blends and Graft Copolymers of Cellulosics

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

  • 386 Accesses

Abstract

Graft copolymerization of cellulosics has been widely investigated to modify the polymer molecules and alter the surface properties of the bulk materials. While practical advantages for the graft copolymerization were found in the surface modifications, basic and systematic studies on the cellulosic molecular grafting were not conducted very well throughout the past century. One reason for the lesser amount of systematization work was the difficulty of elaborate synthesis involved in the controlled polymerization and product isolation and characterization for obtaining the target copolymers. However, since 2000, serious efforts have been made to tackle the formulation of the structure–property relationships at molecular and supramolecular levels and the material functionalization based on those elucidations. In this chapter, the authors review the progress in copolymerization and product isolation, molecular characterization, general thermal transition scheme, thermal treatment effect on the supramolecular structure development, molecular dynamics, and orientation characteristics, mainly for cellulose ester-graft-aliphatic polyesters. Examples of material functionalization include controlled biodegradation and modulation of optical birefringence for molded films of the graft copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishio Y (2006) Material functionalization of cellulose and related polysaccharides via diverse microcompositions. Adv Polym Sci 205:97–151. doi:10.1007/12_095

    Article  Google Scholar 

  2. Teramoto Y (2015) Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides. Molecules 20:5487–5527. doi:10.3390/molecules20045487

    Article  Google Scholar 

  3. Fukuda T, Sugiura M, Takada A, Sato T, Miyamoto T (1991) Characteristics of cellulosic thermotropics. Bull Inst Chem Res Kyoto Univ 69:211–218

    Google Scholar 

  4. Buchannan CM, Gardner RM, Komarek RJ (1993) Aerobic biodegradation of cellulose acetate. J Appl Polym Sci 47:1709–1719. doi:10.1002/app.1993.070471001

    Article  Google Scholar 

  5. Sakai K, Yamauchi T, Nakasu F, Ohe T (1996) Biodegradation of cellulose acetate by Neisseria sicca. Biosci Biotechnol Biochem 60:1617–1622. doi:10.1271/bbb.60.1617

    Article  Google Scholar 

  6. Ajioka M, Enomoto K, Suzuki K, Yamaguchi A (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 68:2125–2131. doi:10.1246/bcsj.68.2125

    Article  Google Scholar 

  7. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176. doi:10.1021/cr040002s

    Article  Google Scholar 

  8. Moon S, Lee C-W, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of L-lactic acid: an alternative route to poly(L-lactic acid) with high molecular weight. Polymer 42:5059–5062. doi:10.1016/S0032-3861(00)00889-2

    Article  Google Scholar 

  9. Teramoto Y, Nishio Y (2003) Cellulose diacetate-graft-poly(lactic acid)s: synthesis of wide-ranging compositions and their thermal and mechanical properties. Polymer 44:2701–2709. doi:10.1016/S0032-3861(03)00190-3

    Article  Google Scholar 

  10. Teramoto Y, Ama S, Higeshiro T, Nishio Y (2004) Cellulose acetate-graft-poly(hydroxyalkanoate)s: synthesis and dependence of the thermal properties on copolymer composition. Macromol Chem Phys 205:1904–1915. doi:10.1002/macp.200400160

    Article  Google Scholar 

  11. Fox TG, Flory PJ (1950) Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21:581–591. doi:10.1063/1.1699711

    Article  Google Scholar 

  12. Reimschuessel HK (1979) On the glass transition temperature of comblike polymers: effects of side chain length and backbone chain structure. J Polym Sci Polym Chem Ed 17:2447–2457. doi:10.1002/pol.1979.170170817

    Article  Google Scholar 

  13. Teramoto Y, Nishio Y (2004) Biodegradable cellulose diacetate-graft-poly(L-lactide)s: thermal treatment effect on the development of supramolecular structures. Biomacromolecules 5:397–406. doi:10.1021/bm034452q

    Article  Google Scholar 

  14. Kusumi R, Teramoto Y, Nishio Y (2008) Crystallization behavior of poly(ε-caprolactone) grafted onto cellulose alkyl esters: effects of copolymer composition and intercomponent miscibility. Macromol Chem Phys 209:2135–2146. doi:10.1002/macp.200800332

    Article  Google Scholar 

  15. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85. doi:10.1039/TF9706600080

    Article  Google Scholar 

  16. Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201–4209. doi:10.1063/1.466117

    Article  Google Scholar 

  17. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112. doi:10.1063/1.1750380

    Article  Google Scholar 

  18. Mandelkern I (1964) Crystallization of polymers. McGraw-Hill, New York

    Google Scholar 

  19. Takahashi T, Nishio Y, Mizuno H (1987) Crystallization behavior of polybutene-1 in the anisotropic system blended with polypropylene. J Appl Polym Sci 34:2757–2768. doi:10.1002/app.1987.070340811

    Article  Google Scholar 

  20. Nishio Y, Hirose N, Takahashi T (1990) Crystallization behavior of poly(ethylene oxide) in its blends with cellulose. Sen’i Gakkaishi 46:441–446. doi:10.2115/fiber.46.10_441

    Article  Google Scholar 

  21. Lauritzen JI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44:4340–4352. doi:10.1063/1.1661962

    Article  Google Scholar 

  22. Hoffman JD, Frolen LJ, Ross GS, Lauritzen JI (1975) On the growth rate of spherulites and axialites from the melt in polyethylene fractions: regime I and regime II crystallization. J Res Natl Bur Stand Sect A Phys Chem 79A:671–699. doi:10.6028/jres.079A.026

    Article  Google Scholar 

  23. Keith HD, Padden FJ, Russell TP (1989) Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents. Macromolecules 22:666–675. doi:10.1021/ma00192a027

    Article  Google Scholar 

  24. Sato M, Kusumi R, Teramoto Y, Nishio Y (2009) Development of supramolecular structures of cellulose acetate-graft-poly(L-lactide) in the isothermal crystallization process: X-ray diffraction and dielectric relaxation measurements. 58th Society of Polymer Science, Japan Annual Meeting, Kobe, Japan. Polymer Preprints Japan, p 3Pc121

    Google Scholar 

  25. Ren J, Adachi K (2003) Dielectric relaxation in blends of amorphous poly(DL-lactic acid) and semicrystalline poly(L-lactic acid). Macromolecules 36:5180–5186. doi:10.1021/ma034420v

    Article  Google Scholar 

  26. Kusumi R, Teramoto Y, Nishio Y (2011) Structural characterization of poly(ε-caprolactone)-grafted cellulose acetate and butyrate by solid-state 13C NMR, dynamic mechanical, and dielectric relaxation analyses. Polymer 52:5912–5921. doi:10.1016/j.polymer.2011.10.032

    Article  Google Scholar 

  27. Teramoto Y, Yoshioka M, Shiraishi N, Nishio Y (2002) Plasticization of cellulose diacetate by graft copolymerization of ε-caprolactone and lactic acid. J Appl Polym Sci 84:2621–2628. doi:10.1002/app.10430

    Article  Google Scholar 

  28. Unohara T, Teramoto Y, Nishio Y (2011) Molecular orientation and optical anisotropy in drawn films of cellulose diacetate-graft-PLLA: comparative investigation with poly(vinyl acetate-co-vinyl alcohol)-graft-PLLA. Cellulose 18:539–553. doi:10.1007/s10570-011-9508-0

    Article  Google Scholar 

  29. Li S, McCarthy S (1999) Further investigations on the hydrolytic degradation of poly (DL-lactide). Biomaterials 20:35–44. doi:10.1016/S0142-9612(97)00226-3

    Article  Google Scholar 

  30. Tsuji H (2002) Autocatalytic hydrolysis of amorphous-made polylactides: effects of L-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43:1789–1796. doi:10.1016/S0032-3861(01)00752-2

    Article  Google Scholar 

  31. Teramoto Y, Nishio Y (2004) Biodegradable cellulose diacetate-graft-poly(L-lactide)s: enzymatic hydrolysis behavior and surface morphological characterization. Biomacromolecules 5:407–414. doi:10.1021/bm034453i

    Article  Google Scholar 

  32. Kusumi R, Lee S-H, Teramoto Y, Nishio Y (2009) Cellulose ester-graft-poly(ε-caprolactone): effects of copolymer composition and intercomponent miscibility on the enzymatic hydrolysis behavior. Biomacromolecules 10:2830–2838. doi:10.1021/bm900666y

    Article  Google Scholar 

  33. Funabashi M, Ninomiya F, Kunioka M (2009) Biodegradability evaluation of polymers by ISO 14855-2. Int J Mol Sci 10:3635–3654. doi:10.3390/ijms10083635

    Article  Google Scholar 

  34. Miller RA, Brady JM, CD E (1977) Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res 11:711–719. doi:10.1002/jbm.820110507

    Article  Google Scholar 

  35. Yamanaka H, Teramoto Y, Nishio Y (2013) Orientation and birefringence compensation of trunk and graft chains in drawn films of cellulose acetate-graft-PMMA synthesized by ATRP. Macromolecules 46:3074–3083. doi:10.1021/ma400155f

    Article  Google Scholar 

Download references

Acknowledgements

The review of this chapter is mainly based on the authors’ studies that have been performed in Professor Y. Nishio’s laboratory of Kyoto University. The authors express their sincerest gratitude for his excellent guidance and are also grateful to many colleagues in the laboratory for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikuni Teramoto .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Teramoto, Y., Kusumi, R. (2017). Cellulosic Graft Copolymers. In: Blends and Graft Copolymers of Cellulosics. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-55321-4_4

Download citation

Publish with us

Policies and ethics