Skip to main content

Spiking Neuron Based Cognitive Memory Model

  • Chapter
  • First Online:
Neuromorphic Cognitive Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 126))

  • 1499 Accesses

Abstract

Jensen et al. (Learn. Mem. 3(2–3), 245–246, 1996 [1]) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This chapter uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen, O., Idiart, M., Lisman, J.E.: Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: role of fast nmda channels. Learn. Mem. 3(2–3), 243–256 (1996)

    Article  Google Scholar 

  2. Rolls, E.: Computational models of hippocampal functions. Learning and memory: a comprehensive reference, pp. 641–665 (2008)

    Google Scholar 

  3. Cutsuridis, V., Wennekers, T.: Hippocampus, microcircuits and associative memory. Neural Netw. 22(8), 1120–1128 (2009)

    Article  Google Scholar 

  4. Rolls, E.T.: A computational theory of episodic memory formation in the hippocampus. Behav. Brain Res. 215(2), 180–196 (2010)

    Article  Google Scholar 

  5. Jensen, O., Lisman, J.E.: Theta/gamma networks with slow nmda channels learn sequences and encode episodic memory: role of nmda channels in recall. Learn. Mem. 3(2–3), 264–278 (1996)

    Article  Google Scholar 

  6. Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K., Buzsáki, G.: Gamma (40–100 hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15(1), 47–60 (1995)

    Google Scholar 

  7. Vanderwolf, C.H.: Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26(4), 407–418 (1969)

    Article  Google Scholar 

  8. Cantero, J.L., Atienza, M., Stickgold, R., Kahana, M.J., Madsen, J.R., Kocsis, B.: Sleep-dependent \(\theta \) oscillations in the human hippocampus and neocortex. J. Neurosci. 23(34), 10897–10903 (2003)

    Google Scholar 

  9. Hughes, J.R.: Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav. 13(1), 25–31 (2008)

    Article  Google Scholar 

  10. Hasselmo, M.E., Bodelón, C., Wyble, B.P.: A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14(4), 793–817 (2002)

    Article  MATH  Google Scholar 

  11. Lisman, J.E., Idiart, M.A.: Storage of 7 \(+/-\) 2 short-term memories in oscillatory subcycles. Science 267(5203), 1512–1515 (1995)

    Article  Google Scholar 

  12. Wagatsuma, H., Yamaguchi, Y.: Neural dynamics of the cognitive map in the hippocampus. Cognit. Neurodyn. 1(2), 119–141 (2007)

    Article  Google Scholar 

  13. Yamaguchi, Y., Sato, N., Wagatsuma, H., Wu, Z., Molter, C., Aota, Y.: A unified view of theta-phase coding in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 17(2), 197–204 (2007)

    Article  Google Scholar 

  14. Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  15. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity, 1st edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  16. Koene, R.A., Hasselmo, M.E.: First-in-first-out item replacement in a model of short-term memory based on persistent spiking. Cereb. Cortex 17(8), 1766–1781 (2007)

    Article  Google Scholar 

  17. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature Neurosci. 3, 1178–1183 (2000)

    Article  Google Scholar 

  18. Tan, C.H., Cheu, E.Y., Hu, J., Yu, Q., Tang, H.: Associative memory model of hippocampus ca3 using spike response neurons. In: Processing of the Neural Information, pp. 493–500. Springer, Heidelberg (2011)

    Google Scholar 

  19. Jensen, O., Lisman, J.E.: Novel lists of 7\(+/-\)2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn. Mem. 3(2–3), 257–263 (1996)

    Article  Google Scholar 

  20. Jensen, M.S., Azouz, R., Yaari, Y.: Spike after-depolarization and burst generation in adult rat hippocampal ca1 pyramidal cells. J. Physiol. 492, 199–210 (1996)

    Article  Google Scholar 

  21. Storm, J.F.: An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J. Physiol. 409(1), 171–190 (1989)

    Article  Google Scholar 

  22. Park, J.Y., Remy, S., Varela, J., Cooper, D.C., Chung, S., Kang, H.W., Lee, J.H., Spruston, N.: A post-burst afterdepolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of cav2. 3 r-type calcium channels in ca1 pyramidal neurons. PLoS Biol. 8(11), e1000534 (2010)

    Google Scholar 

  23. Araneda, R., Andrade, R.: 5-hydroxytryptamine 2 and 5-hydroxytryptamine 1a receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40(2), 399–412 (1991)

    Article  Google Scholar 

  24. Alonso, A., Gaztelu, J., Bun, W., Garcia-Austt, E., et al.: Cross-correlation analysis of septohippocampal neurons during\(\equiv \)-rhythm. Brain Res. 413(1), 135–146 (1987)

    Article  Google Scholar 

  25. Rutishauser, U., Ross, I.B., Mamelak, A.N., Schuman, E.M.: Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464(7290), 903–907 (2010)

    Article  Google Scholar 

  26. Skaggs, W.E., McNaughton, B.L.: Theta phase precession in hippocampal. Hippocampus 6, 149–172 (1996)

    Article  Google Scholar 

  27. Yamaguchi, Y., Aota, Y., McNaughton, B.L., Lipa, P.: Bimodality of theta phase precession in hippocampal place cells in freely running rats. J. Neurophysiol. 87(6), 2629–2642 (2002)

    Google Scholar 

  28. Wagatsuma, H., Yamaguchi, Y.: Cognitive map formation through sequence encoding by theta phase precession. Neural Comput. 16(12), 2665–2697 (2004)

    Article  MATH  Google Scholar 

  29. Mizuseki, K., Sirota, A., Pastalkova, E., Buzsáki, G.: Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64(2), 267–280 (2009)

    Article  Google Scholar 

  30. Ozawa, S., Kamiya, H., Tsuzuki, K.: Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54(5), 581–618 (1998)

    Article  Google Scholar 

  31. Forsythe, I.D., Westbrook, G.L.: Slow excitatory postsynaptic currents mediated by n-methyl-d-aspartate receptors on cultured mouse central neurones. J. Physiol. 396(1), 515–533 (1988)

    Article  Google Scholar 

  32. Stern, P., Edwards, F.A., Sakmann, B.: Fast and slow components of unitary epscs on stellate cells elicited by focal stimulation in slices of rat visual cortex. J. Physiol. 449(1), 247–278 (1992)

    Article  Google Scholar 

  33. Rajji, T., Chapman, D., Eichenbaum, H., Greene, R.: The role of ca3 hippocampal nmda receptors in paired associate learning. J. Neurosci. 26(3), 908–915 (2006)

    Article  Google Scholar 

  34. Mann, E.O., Radcliffe, C.A., Paulsen, O.: Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J. physiol. 562(1), 55–63 (2005)

    Article  Google Scholar 

  35. Hájos, N., Paulsen, O.: Network mechanisms of gamma oscillations in the ca3 region of the hippocampus. Neural Netw. 22(8), 1113–1119 (2009)

    Article  Google Scholar 

  36. Caillard, O., Debanne, D.: Cell-specific contribution to gamma oscillations. J. Physiol. 588(5), 751–751 (2010)

    Article  Google Scholar 

  37. Sik, A., Penttonen, M., Ylinen, A., Buzsáki, G.: Hippocampal ca1 interneurons: an in vivo intracellular labeling study. J. Neurosci. 15(10), 6651–6665 (1995)

    Google Scholar 

  38. Miles, R.: Synaptic excitation of inhibitory cells by single ca3 hippocampal pyramidal cells of the guinea-pig in vitro. J. Physiol. 428(1), 61–77 (1990)

    Article  Google Scholar 

  39. Bliss, T.: Synaptic plasticity in the hippocampus. Trends Neurosci. 2, 42–45 (1979)

    Article  Google Scholar 

  40. Neves, G., Cooke, S.F., Bliss, T.V.: Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci. 9(1), 65–75 (2008)

    Article  Google Scholar 

  41. de Almeida, L., Idiart, M., Lisman, J.E.: Memory retrieval time and memory capacity of the ca3 network: role of gamma frequency oscillations. Learn. Mem. 14(11), 795–806 (2007)

    Article  Google Scholar 

  42. Marr, D.: Simple memory: a theory for archicortex. Philos. Trans. R. Soc. B Biol. Sci. 262(841), 23–81 (1971)

    Article  Google Scholar 

  43. Sommer, F.T., Wennekers, T.: Associative memory in networks of spiking neurons. Neural Netw. 14(6), 825–834 (2001)

    Article  Google Scholar 

  44. Kunec, S., Hasselmo, M.E., Kopell, N.: Encoding and retrieval in the ca3 region of the hippocampus: a model of theta-phase separation. J. Neurophysiol. 94(1), 70–82 (2005)

    Article  Google Scholar 

  45. Bush, D., Philippides, A., Husbands, P., O’Shea, M.: Dual coding with stdp in a spiking recurrent neural network model of the hippocampus. PLoS Comput. Biol. 6(7), e1000839 (2010)

    Google Scholar 

  46. Cutsuridis, V., Cobb, S., Graham, B.P.: Encoding and retrieval in a model of the hippocampal ca1 microcircuit. Hippocampus 20(3), 423–446 (2010)

    Google Scholar 

  47. Samura, T., Hattori, M., Ishizaki, S.: Autoassociative and heteroassociative hippocampal ca3 model based on location dependencies derived from anatomical and physiological findings. In: International Congress Series, vol. 1301, pp. 140–143. Elsevier (2007)

    Google Scholar 

  48. Hunter, R., Cobb, S., Graham, B.P.: Improving associative memory in a network of spiking neurons. In: Artificial neural networks-ICANN 2008, pp. 636–645. Springer (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, Q., Tang, H., Hu, J., Tan, K. (2017). Spiking Neuron Based Cognitive Memory Model. In: Neuromorphic Cognitive Systems. Intelligent Systems Reference Library, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-55310-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55310-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55308-5

  • Online ISBN: 978-3-319-55310-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics