Skip to main content

An Alternative Method for Snow Cover Mapping on Satellite Images by Modern Applied Mathematics

  • Conference paper
  • First Online:
Modeling, Dynamics, Optimization and Bioeconomics II (DGS 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 195))

Included in the following conference series:

Abstract

Continuous monitoring of snow cover is very crucial since the extend and amount of snow are key parameters for many processes closely related to ecology and climatology. Measuring the extend and amount of snow by in situ measurements are not always practical and possible due to operational and logistic reasons. Since 1960s, images taken by earth-observing satellites have been extensively used to monitor snow cover, and many parametric and nonparametric image classification methods have been proposed and applied for snow cover mapping. In this study, a novel application of nonparametric regression splines is introduced within the frame of modern applied mathematics and remote sensing. Implementation of multivariate adaptive regression splines (MARS) in image classification for snow mapping on moderate resolution imaging spectroradiometer (MODIS) images is demonstrated within a well-elaborated framework. The relation between the variations in MARS model building parameters and their effect on the predictive performance are represented in various perspectives. Performance of MARS in image classification is compared with the traditional maximum-likelihood (ML) method by using error matrices. Significant improvement in the classification accuracy of MARS models is observed as the number of basis functions and the degree of interaction increase. On three image sets out of four, the MARS approach gives better classification accuracies when compared to ML method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salomonson, V.V., Appel, I.: Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 89, 351–360 (2004)

    Article  Google Scholar 

  2. Liang, T.G., Huang, X.D., Wu, C.X., Liu, X.Y., Li, W.L., Guo, Z.G., Ren, J.Z.: An application of MODIS data to snow cover monitoring in a pastoral area: a case study in Northern Xinjiang, China. Remote Sens. Environ. 112, 1514–1526 (2008)

    Article  Google Scholar 

  3. Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, Ü.: Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 97, 216–230 (2005)

    Article  Google Scholar 

  4. Czyzowska-Wisniewski, E.H., van Leeuwen, W.J.D., Hirschboeck, K.K., Marsh, S.E., Wisniewski, W.T.: Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network. Remote Sens. Environ. 156, 403–417 (2015)

    Article  Google Scholar 

  5. Gafurov, A., Brdossy, A.: Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Sys. Sci. 13, 1361–1373 (2009)

    Article  Google Scholar 

  6. Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V.: Earth Science Satellite Remote Sensing. Volume 1: Science and Instruments. Springer, Beijing (2006)

    Book  Google Scholar 

  7. Salomonson, V.V., Appel, I.: Development of the aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens. 44, 1747–1756 (2006)

    Article  Google Scholar 

  8. Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J.: MODIS snow-cover products. Remote Sens. Environ. 83, 181–194 (2002)

    Article  Google Scholar 

  9. Tso, B., Mather, P.M.: Classification Methods for Remotely Sensed Data, 2nd edn. CRC Press, Boca Raton (2009)

    Book  MATH  Google Scholar 

  10. Ines, A.V., Honda, K.: On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: a numerical study for mixed-pixel environment. Adv. Water Resour. 28, 856–870 (2005)

    Article  Google Scholar 

  11. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28, 823–870 (2007)

    Article  Google Scholar 

  12. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn. Academic Press, New York (2006)

    Google Scholar 

  13. Cortijo, F., De La Blanca, N.P.: The performance of regularized discriminant analysis versus non-parametric classifiers applied to high-dimensional image classification. Int. J. Remote Sens. 20, 3345–3365 (1999)

    Article  Google Scholar 

  14. Raudys, S.: On dimensionality, sample size, and classification error of nonparametric linear classification algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 19, 667–671 (1997)

    Article  Google Scholar 

  15. Civco, D.L.: Artificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Sys. 7, 173–186 (1993)

    Article  Google Scholar 

  16. Foody, G.M.: Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int. J. Remote Sens. 17, 1317–1340 (1996)

    Article  Google Scholar 

  17. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31, 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuter, S.: Atmospheric correction and image classification on MODIS images by nonparametric regression splines (Ph.D. thesis), The Graduate School of Natural and Applied Sciences, Department of Geodetic and Geographic Information Technologies. Middle East Technical University, Ankara, Turkey (2014)

    Google Scholar 

  20. Özmen, A., Kropat, E., Weber, G.-W.: Spline regression models for complex multi-modal regulatory networks. Optim. Methods Softw. 29, 515–534 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Alp, Ö.S., Büyükbebeci, E., Çekiç, Aİ., Özkurt, F.Y., Taylan, P., Weber, G.-W.: CMARS and GAM & CQP - modern optimization methods applied to international credit default prediction. J. Comput. Appl. Math. 235, 4639–4651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Özmen, A., Batmaz, İ., Weber, G.-W.: Precipitation modeling by polyhedral RCMARS and comparison with MARS and CMARS. Environ. Model. Assess. 19, 425–435 (2014)

    Article  Google Scholar 

  23. Henne, P.D., Hu, F.S., Cleland, D.T.: Lake-effect snow as the dominant control of mesic-forest distribution in Michigan, USA. J. Ecol. 95, 517–529 (2007)

    Article  Google Scholar 

  24. Zhou, Y., Leung, H.: Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Sys. Softw. 80, 1349–1361 (2007)

    Article  Google Scholar 

  25. Krzyścin, J.W., Eerme, K., Janouch, M.: Long-term variations of the UV-B radiation over Central Europe as derived from the reconstructed UV time series. Ann. Geophys. 22, 1473–1485 (2004)

    Article  Google Scholar 

  26. Mukhopadhyay, A., Iqbal, A.: Prediction of mechanical property of steel strips using multivariate adaptive regression splines. J. Appl. Stat. 36, 1–9 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Samui, P., Das, S., Kim, D.: Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean Eng. 38, 2123–2127 (2011)

    Article  Google Scholar 

  28. Chou, S.M., Lee, T.S., Shao, Y.E., Chen, I.F.: Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Sys. Appl. 27, 133–142 (2004)

    Article  Google Scholar 

  29. Durmaz, M., Karslıoğlu, M.O., Nohutcu, M.: Regional VTEC modeling with multivariate adaptive regression splines. Adv. Space Res. 46, 180–189 (2010)

    Article  Google Scholar 

  30. Kuter, S., Weber, G.W., Özmen, A., Akyürek, Z.: Modern applied mathematics for alternative modeling of the atmospheric effects on satellite images. In: Pinto, A.A., Zilberman, D. (eds.) Modeling, Dynamics, Optimization and Bioeconomics I, pp. 469–485. Springer, Berlin (2014)

    Google Scholar 

  31. Kuter, S., Weber, G.-W., Akyürek, Z., Özmen, A.: Inversion of top of atmospheric reflectance values by conic multivariate adaptive regression splines. Inverse Probl. Sci. Eng. 23, 651–669 (2015)

    Article  Google Scholar 

  32. Quirós, E., Felicísimo, Á.M., Cuartero, A.: Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. Sensors 9, 9011–9028 (2009)

    Article  Google Scholar 

  33. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  34. ArcMap\(^{\rm TM}\), ESRI ArcMap Version 9.3.1, 1999–2009 ESRI Inc

    Google Scholar 

  35. Milborrow, S.: Earth: Multivariate adaptive regression spline models - derived from mda:mars by Trevor Hastie and Rob Tibshirani, R package version 3.2-2. http://CRAN.R-project.org/package=earth 2012

  36. R Development Core Team.: R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. 2012

  37. MATLAB\(^{\textregistered }\), R2012b (8.0.0.783), The MathWorks, Inc

    Google Scholar 

  38. Mather, P.M.: Computer Processing of Remotely-Sensed Images: An Introduction, 3rd edn. Wiley, New York (2004)

    Google Scholar 

  39. Congalton, R.G.: A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991)

    Article  Google Scholar 

  40. Weber, G.-W., Batmaz, İ., Köksal, G., Taylan, P., Yerlikaya-Özkurt, F.: CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Probl. Sci. Eng. 20, 371–400 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Özmen, A., Weber, G.-W., Batmaz, İ., Kropat, E.: RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set. Commun. Nonlinear Sci. Numer. Simul. 16, 4780–4787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pham, H.M., Yamaguchi, Y., Bui, T.Q.: A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landsc. Urban Plan. 100, 223–230 (2011)

    Article  Google Scholar 

  43. Zhang, Q., Wang, J., Peng, X., Gong, P., Shi, P.: Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data. Int. J. Remote Sens. 23, 3057–3078 (2002)

    Article  Google Scholar 

  44. Kong, F., Yin, H., Nakagoshi, N., Zong, Y.: Urban green space network development for biodiversity conservation: identification based on graph theory and gravity modeling. Landsc. Urban Plan. 95, 16–27 (2010)

    Article  Google Scholar 

  45. Siart, C., Eitel, B., Panagiotopoulos, D.: Investigation of past archaeological landscapes using remote sensing and GIS: a multi-method case study from Mount Ida, Crete. J. Archaeol. Sci. 35, 2918–2926 (2008)

    Article  Google Scholar 

  46. Keay, S.J., Parcak, S.H., Strutt, K.D.: High resolution space and ground-based remote sensing and implications for landscape archaeology: the case from Portus, Italy. J. Archaeol. Sci. 52, 277–292 (2014)

    Article  Google Scholar 

  47. De Laet, V., van Loon, G.J.M., Van der Perre, A., Deliever, I., Willems, H.: Integrated remote sensing investigations of ancient quarries and road systems in the Greater Dayr al-Barshã Region, Middle Egypt: a Study of logistics. J. Archaeol. Sci. 55, 286–300 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih Kuter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kuter, S., Akyürek, Z., Kuter, N., Weber, GW. (2017). An Alternative Method for Snow Cover Mapping on Satellite Images by Modern Applied Mathematics. In: Pinto, A., Zilberman, D. (eds) Modeling, Dynamics, Optimization and Bioeconomics II. DGS 2014. Springer Proceedings in Mathematics & Statistics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-55236-1_13

Download citation

Publish with us

Policies and ethics