On Pseudorandom Properties of Certain Sequences of Points on Elliptic Curve

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10064)


In this paper we study the pseudorandom properties of sequences of points on elliptic curves. These sequences are constructed by taking linear combinations with small coefficients (e.g. \(-1,0,+1\)) of the orbit elements of a point with respect to a given endomorphism of the curve. We investigate the linear complexity and the distribution of these sequences. The result on the linear complexity answers a question of Igor Shparlinski.



The author is partially supported by the Austrian Science Fund FWF Project F5511-N26 which is part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications” and by Hungarian National Foundation for Scientific Research, Grant No. K100291.


  1. 1.
    Beelen, P.H.T., Doumen, J.M.: Pseudorandom sequences from elliptic curves. In: Mullen, G.L., Stichtenoth, H., Tapia-Recillas, H. (eds.) Finite Fields with Applications to Coding Theory, Cryptography and Related Areas (Oaxaca, 2001), pp. 37–52. Springer, Berlin (2002). doi: 10.1007/978-3-642-59435-9_3 CrossRefGoogle Scholar
  2. 2.
    Bosma, W.: Signed bits and fast exponentiation. J. Théor. Nombres Bordx. 13(1), 27–41 (2001). 21st Journées Arithmétiques (Rome, 2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Drmota, M., Tichy, R.: Sequences, Discrepancies and Applications. Springer, Berlin (1997)CrossRefMATHGoogle Scholar
  4. 4.
    Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_11 CrossRefGoogle Scholar
  5. 5.
    Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992). doi: 10.1007/3-540-46766-1_22 Google Scholar
  6. 6.
    Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. John Wiley, New York (1974)MATHGoogle Scholar
  7. 7.
    Lange, T., Shparlinski, I.E.: Collisions in fast generation of ideal classes and points on hyperelliptic and elliptic curves. Appl. Algebra Eng. Commun. Comput. 15, 329–337 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lange, T., Shparlinski, I.E.: Distribution of some sequences of points on elliptic curves. J. Math. Cryptol. 1(1), 1–11 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Meidl, W., Winterhof, A.: Linear complexity of sequences and multisequences. In: Mullen, G., Panario, D. (eds.) Handbook of Finite Fields, pp. 324–336. Chapman & Hall, London (2013)Google Scholar
  10. 10.
    Niederreiter, H.: Linear complexity and related complexity measures for sequences. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 1–17. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-24582-7_1 CrossRefGoogle Scholar
  11. 11.
    Shparlinski, I.E.: Pseudorandom number generators from elliptic curves. Recent Trends Cryptogr. Contemp. Math. 477, 121–141 (2009). American Mathematical Society, Providence, RIMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Berlin (1995)Google Scholar
  13. 13.
    Winterhof, A.: Linear complexity and related complexity measures. In: Selected Topics in Information and Coding Theory, pp. 3–40. World Scientific, Singapore (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria

Personalised recommendations