Skip to main content

Distribution and Polynomial Interpolation of the Dodis-Yampolskiy Pseudo-Random Function

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10064))

Included in the following conference series:

Abstract

We give some theoretical support to the security of the cryptographic pseudo-random function proposed by Dodis and Yampolskiy in 2005. We study the distribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banks, W.D., Griffin, F., Lieman, D., Shparlinski, I.E.: Non-linear complexity of the naor–reingold pseudo-random function. In: Song, J.S. (ed.) ICISC 1999. LNCS, vol. 1787, pp. 53–59. Springer, Heidelberg (2000). doi:10.1007/10719994_5

    Google Scholar 

  2. Bourgain, J., Shparlinski, I.E.: Distribution of consecutive modular roots of an integer. Acta Arith. 134(1), 83–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  4. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3), 457–476 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to win the clonewars: efficient periodic n-times anonymous authentication. In: ACM CCS 2006: 13th Conference on Computer and Communications Security, Alexandria, Virginia, USA, 30 October–3 November 2006, pp. 201–210. ACM Press (2006)

    Google Scholar 

  6. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005). doi:10.1007/11426639_18

    Chapter  Google Scholar 

  7. Coppersmith, D., Shparlinski, I.: On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping. J. Cryptol. 13(3), 339–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drmota, M., Tichy, R.: Discrepancies and Applications. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  9. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30580-4_28

    Chapter  Google Scholar 

  10. Gómez, D., Gutierrez, J., Ibeas, A.: On the linear complexity of the Naor-Reingold sequence. Inf. Process. Lett. 111(17), 854–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society, Providence (2004)

    Book  MATH  Google Scholar 

  12. Kiltz, E., Winterhof, A.: Polynomial interpolation of cryptographic functions related to Diffie-Hellman and discrete logarithm problem. Discrete Appl. Math. 154(2), 326–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ling, S., Shparlinski, I.E., Wang, H.: On the multidimensional distribution of the Naor-Reingold pseudo-random function. Math. Comput. 83(289), 2429–2434 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lange, T., Winterhof, A.: Polynomial interpolation of the elliptic curve and XTR discrete logarithm. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 137–143. Springer, Heidelberg (2002). doi:10.1007/3-540-45655-4_16

    Chapter  Google Scholar 

  15. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Niederreiter, H., Winterhof, A.: Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators. Acta Arith. 93(4), 387–399 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Ostafe, A., Shparlinski, I.E.: Twisted exponential sums over points of elliptic curves. Acta Arith. 148(1), 77–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shparlinski, I.E.: Exponential sums with consecutive modular roots of an integer. Q. J. Math. 62(1), 207–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn. Chapman and Hall/CRC, Boca Raton (2008)

    Book  MATH  Google Scholar 

  20. Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. U.S.A. 34, 204–207 (1948)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their detailed comments and suggestions for the manuscript. The authors were supported in part by the French ANR JCJC ROMAnTIC project (ANR-12-JS02-0004) and by the Simons foundation Pole PRMAIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Mefenza .

Editor information

Editors and Affiliations

A Proof of Proposition 1

A Proof of Proposition 1

The classical Weil bound for exponential sums can be found in [Wei48, NW00].

Lemma 4

Let F(x) be a non constant polynomial in \(\mathbb {F}_q[x]\) such that \(F(x)\ne h(x)^p-h(x)\) for any \(h(x)\in \overline{\mathbb {F}_q}(x)\). We have

$$\begin{aligned}\left| \sum _{x\in \mathbb {F}_q}\psi (F(x))\right| \le (\deg (F)-1)q^{1/2} \end{aligned}$$

We deduce the following simple lemma:

Lemma 5

For any pairwise distinct positive integers \(1\le r_1,\dots ,r_{\upsilon }\le R\), we have

$$\begin{aligned} \max _{\begin{array}{c} (a_1,\dots ,a_{\upsilon })\in \mathbb {F}_{p^r}^{\upsilon }\\ (a_1,\dots ,a_{\upsilon })\ne (0,\dots ,0) \end{array}}\left| \sum _{n=1}^{t}\psi \left( \sum _{i=1}^{\upsilon }a_ig^{r_in}\right) \right| \le Rq^{1/2}. \end{aligned}$$

Proof

Let \(s={(q-1)}/{t}\). We have \(g=\theta ^s\), where \(\theta \) is a primitive root in \(\mathbb {F}_{q}\) and

$$\begin{aligned} \sum _{n=1}^{t}\psi \left( \sum _{i=1}^{\upsilon }a_ig^{r_in}\right) =\sum _{n=1}^{t}\psi \left( \sum _{i=1}^{\upsilon }a_i\theta ^{sr_in}\right)= & {} \frac{1}{s}\sum _{n=1}^{q-1}\psi \left( \sum _{i=1}^{\upsilon }a_i\theta ^{sr_in}\right) \\= & {} \frac{1}{s}\left( \sum _{x\in \mathbb {F}_{q}}\psi \left( \sum _{i=1}^{\upsilon }a_ix^{sr_i}\right) -1\right) \end{aligned}$$

Applying Lemma 4, we obtain:

$$\begin{aligned} \max _{\begin{array}{c} (a_1,\dots ,a_{\upsilon })\in \mathbb {F}_{p^r}^{\upsilon }\\ (a_1,\dots ,a_{\upsilon })\ne (0,\dots ,0) \end{array}}\left| \sum _{n=1}^{t}\psi \left( \sum _{i=1}^{\upsilon }a_ig^{r_in}\right) \right| \le \frac{1}{s}((Rs-1)q^{1/2}+1)\le Rq^{1/2}. \end{aligned}$$

   \(\square \)

Proof

(Proposition 1 ). For any integer \(k\ge 2\), we have

$$\begin{aligned} {S_{a,b}}^k=\sum _{n_1,\dots ,n_k\in \mathbb {Z}_{t}^*}\psi \left( a\sum _{j=1}^{k}g^{1/n_j}\right) e_t\left( b\sum _{j=1}^{k} n_j\right) . \end{aligned}$$

For \(m \in \mathbb {Z}_{t}\), we collect together the terms with \(n_1+\dots +n_k\equiv m \bmod t\), getting:

$$\begin{aligned} \left| S_{a,b}\right| ^k\le \sum _{m\in \mathbb {Z}_{t}}\left| \sum _{\begin{array}{c} n_1,\dots ,n_k\in \mathbb {Z}_{t}^*\\ n_1+\dots +n_k\equiv m \bmod t \end{array}}\psi \left( a\sum _{j=1}^{k}g^{1/n_j}\right) \right| . \end{aligned}$$

By the Cauchy inequality, we can upper-bound \(\left| S_{a,b}\right| ^{2k} \) by

$$\begin{aligned} t\sum _{m\in \mathbb {Z}_{t}}\left| \sum _{\begin{array}{c} n_1,\dots ,n_k\in \mathbb {Z}_{t}^*\\ n_1+\dots +n_k\equiv m \bmod t \end{array}}\psi \left( a\sum _{j=1}^{k}g^{1/n_j}\right) \right| ^2 = t\sum _{(n_1,\dots ,n_{2k})\in N_k}\psi \left( a\sum _{j=1}^{2k}(-1)^jg^{1/n_j}\right) \end{aligned}$$

where the outside summation is taken over the set of vectors

$$\begin{aligned} N_k=\{(n_1,\dots ,n_{2k})\in (\mathbb {Z}_{t}^*)^{2k}\,: n_1+\dots +n_{2k-1}\equiv n_2+n_4+\dots +n_{2k} \bmod t)\}. \end{aligned}$$

One can see that for any \(m\in \mathbb {N}\) with \(\gcd (m,t)=1\), we have

$$\begin{aligned} \sum _{(n_1,\dots ,n_{2k})\in N_k}\psi \left( a\sum _{j=1}^{2k}(-1)^jg^{1/n_j}\right) =\sum _{(n_1,\dots ,n_{2k})\in N_k}\psi \left( a\sum _{j=1}^{2k}(-1)^jg^{m/n_j}\right) . \end{aligned}$$

Let us fix some parameter Q with \(Q\ge 2\log t\). Let \(\mathcal {Q}\) be the set of primes \(m \le Q\) with \(\gcd (m,t)=1\). Averaging over all \(m \in \mathcal {Q}\), we obtain

$$\begin{aligned} \left| S_{a,b}\right| ^{2k}\le \frac{t}{\sharp \mathcal {Q}}\sum _{m\in \mathcal {Q}}\sum _{(n_1,\dots ,n_{2k})\in N_k}\psi \left( a\sum _{j=1}^{2k}(-1)^jg^{m/n_j}\right) . \end{aligned}$$

The number w(t) of prime divisors of t satisfies \(w(t)\le (1+o(1)) ({\log t})/({\log \log t)}\) (which can be seen from the trivial inequality \(w(t)!\le t\) and the Stirling formula). By the prime number theorem, we have (since \(Q\ge 2\log t\)):

$$\begin{aligned} \sharp \mathcal {Q}\ge (1+o(1))\frac{Q}{\log Q}-(1+o(1))\frac{\log t}{\log (\log t)}\ge 0.5\frac{Q}{\log Q}, \end{aligned}$$

provided that t is large enough. We have \(\sharp N_k\le t^{2k-1}\). Using the Hölder inequality and then extending the region of summation, we obtain that for any integer \(\ell \ge 1\), we have:

$$\begin{aligned} \left| S_{a,b}\right| ^{4k\ell }\le & {} \frac{t^{2\ell }}{\sharp \mathcal {Q}^{2\ell }}(\sharp N_k)^{2\ell -1}\sum _{n_1,\dots ,n_{2k}\in \mathbb {Z}_{t}^*}\left| \sum _{m \in \mathcal {Q}}\psi \left( a\sum _{j=1}^{2k}(-1)^jg^{m/n_j}\right) \right| ^{2\ell } \\\ll & {} \frac{t^{4k\ell -2k+1}\log ^{2\ell }Q}{Q^{2\ell }}\sum _{n_1,\dots ,n_{2k}=1}^{t}\left| \sum _{m \in \mathcal {Q}}\psi \left( a\sum _{j=1}^{2k}(-1)^jg^{mn_j}\right) \right| ^{2\ell }\\= & {} \frac{t^{4k\ell -2k+1}\log ^{2\ell }Q}{Q^{2l}}\sum _{n_1,\dots ,n_{2k}=1}^{t}\sum _{m_1,\dots ,m_{2\ell }\in \mathcal {Q}}\psi \left( a\sum _{j=1}^{2k}\sum _{h=1}^{2\ell }(-1)^{j+h}g^{m_hn_j}\right) \\= & {} \frac{t^{4k\ell -2k+1}\log ^{2\ell }Q}{Q^{2\ell }}\sum _{m_1,\dots ,m_{2\ell }\in \mathcal {Q}}\left| \sum _{n=1}^{t}\psi \left( a\sum _{h=1}^{2\ell }(-1)^hg^{m_hn}\right) \right| ^{2k}. \end{aligned}$$

For \(O(\sharp \mathcal {Q}^\ell )\)=\(O(Q^\ell \log ^{-\ell } Q)\) tuples \((m_1,\dots ,m_{2\ell })\in \mathcal {Q}^{2\ell }\) such that the tuple of the elements on the odd positions \((m_1,\dots ,m_{2\ell -1})\) is a permutation of the elements on the even positions \((m_2,\dots ,m_{2\ell })\), we estimate the inner sum trivially as t.

For the remaining \(O((\sharp Q)^{2\ell })=O(Q^{2\ell }(\log Q)^{-2\ell })\) tuples, we use the bound of Lemma 5. Therefore,

$$\begin{aligned} \left| S_{a,b}\right| ^{4k\ell }\ll & {} \frac{t^{4k\ell -2k+1}\log ^{2\ell }Q}{Q^{2l}}(Q^\ell \log ^{-\ell }Q t^{2k}+Q^{2\ell }\log ^{-2\ell }Q(Qq^{1/2})^{2k})\\= & {} t^{4k\ell -2k+1}(Q^{-\ell }\log ^\ell Qt^{2k}+Q^{2k}q^k). \end{aligned}$$

Taking \(Q=2t^{2k/(2k+\ell )}q^{-k/(2k+\ell )}(\log q)^{\ell /(2k+\ell )}\) and if \(t\ge q^{1/2}(\log q)^2\), one can see that \(Q\ge 2\log t\) and we obtain

$$\begin{aligned} \left| S_{a,b}\right| ^{4k\ell }\ll t^{4k\ell -(2k\ell -2k-\ell )/(2k+\ell )}q^{k\ell /(2k+\ell )}(\log q)^{\ell /(2k+\ell )} \end{aligned}$$

and the result follows.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mefenza, T., Vergnaud, D. (2016). Distribution and Polynomial Interpolation of the Dodis-Yampolskiy Pseudo-Random Function. In: Duquesne, S., Petkova-Nikova, S. (eds) Arithmetic of Finite Fields. WAIFI 2016. Lecture Notes in Computer Science(), vol 10064. Springer, Cham. https://doi.org/10.1007/978-3-319-55227-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55227-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55226-2

  • Online ISBN: 978-3-319-55227-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics