Investigation of Social Predictors of Competitive Behavior in Persuasive Technology

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10171)

Abstract

Research has shown that Competition is one of the most powerful persuasive strategies to intrinsically motivate users in a social context towards performing a target behavior. However, in persuasive technology research, studies showing the predictors of the “persuasiveness of Competition” as a motivational strategy are scarce. Consequently, based on a sample size of 213 Canadians, we tested a model using three socially influential strategies (Social Learning, Social Comparison and Reward) as predictors of Competition. Our model accounts for 42% of the variation in Competition and reveals that Reward is the strongest predictor of Competition, followed by Social Comparison, but Social Learning is not a predictor. Moreover, it reveals that Social Comparison mediates the influence of Reward on Social Learning and Competition. Our findings provide designers of persuasive applications with insight into the possibility of implementing Reward, Social Comparison and Competition as effective co-strategies for stimulating user engagement in gamified applications.

Keywords

Persuasive strategies Gamification Social influence Social comparison Social learning Reward Competition Intrinsic motivation Path model 

References

  1. 1.
    Bandura, A.: Social learning theory, pp. 1–46. Stanford University (1971)Google Scholar
  2. 2.
    Busch, M., Schrammel, J., Tscheligi, M.: Personalized persuasive technology – development and validation of scales for measuring persuadability. In: Berkovsky, S., Freyne, J. (eds.) PERSUASIVE 2013. LNCS, vol. 7822, pp. 33–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37157-8_6 CrossRefGoogle Scholar
  3. 3.
    Cheng, R.: Persuasion strategies for computers as persuasive technologies. vol. 10, no. 2010, pp. 1–7. Department of Computer Science University of Saskatchewan (2003)Google Scholar
  4. 4.
    Eyck, A., Geerlings, K., Karimova, D., Meerbeek, B., Wang, L., IJsselsteijn, W., Kort, Y., Roersma, M., Westerink, J.: Effect of a virtual coach on athletes’ motivation. In: IJsselsteijn, Wijnand, A., Kort, Yvonne, A.,W., Midden, C., Eggen, B., Hoven, E. (eds.) PERSUASIVE 2006. LNCS, vol. 3962, pp. 158–161. Springer, Heidelberg (2006). doi:10.1007/11755494_22 CrossRefGoogle Scholar
  5. 5.
    Festinger, L.: A theory of social comparison. Hum. Relat. 7, 117–140 (1954)CrossRefGoogle Scholar
  6. 6.
    Fogg, B.J. et al.: Motivating, influencing, and persuading users. In: Human Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications, pp. 133–146 (2009)Google Scholar
  7. 7.
    Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think and Do. Morgan Kaufmann, San Francisco (2003)Google Scholar
  8. 8.
    Garcia, S.M., et al.: The psychology of competition: a social comparison perspective. Perspect. Psychol. Sci. 8(6), 634–650 (2013)CrossRefGoogle Scholar
  9. 9.
    Hair, J.F., et al.: A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications Inc., Washington DC (2014)MATHGoogle Scholar
  10. 10.
    Hamari, J., Koivisto, J., Pakkanen, T.: Do persuasive technologies persuade? - a review of empirical studies. In: Spagnolli, A., Chittaro, L., Gamberini, L. (eds.) PERSUASIVE 2014. LNCS, vol. 8462, pp. 118–136. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07127-5_11 CrossRefGoogle Scholar
  11. 11.
    Huber, M.Z., Hilty, L.M.: Gamification and sustainable consumption: overcoming the limitations of persuasive technologies. Adv. Intell. Syst. Comput. 310, 367–385 (2015)CrossRefGoogle Scholar
  12. 12.
    Kaptein, M.: Adaptive persuasive messages. In: An E-Commerce Setting: The Use of Persuasion Profiles, Ecis 2011, Paper 183 (2011)Google Scholar
  13. 13.
    Kaptein, M., Lacroix, J., Saini, P.: Individual differences in persuadability in the health promotion domain. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 94–105. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13226-1_11 CrossRefGoogle Scholar
  14. 14.
    Malone, T.W., Lepper, M.R.: Making learning fun: a taxonomy of intrinsic motivations for learning. Aptit. Learn. Instr. 3(3), 223–253 (1987)Google Scholar
  15. 15.
    Miller, N.E., Dollard, J.: Social Learning and Imitation. New Haven, CT, US (1941)Google Scholar
  16. 16.
    Oinas-Kukkonen, H.: Persuasive systems design: key issues, process model, and system features. Inf. Syst. 24, 485–500 (2009). March 2009Google Scholar
  17. 17.
    Orji, R.: Exploring the persuasiveness of behavior change support strategies and possible gender differences. CEUR Workshop Proc. 1153, 41–57 (2014)Google Scholar
  18. 18.
    Orji, R. et al.: Towards personality-driven persuasive health games and gamified systems. In: Proceedings SIGCHI Conference Human Factors Computer System (2017)Google Scholar
  19. 19.
    Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp. Educ. Psychol. 25(1), 54–67 (2000)CrossRefGoogle Scholar
  20. 20.
    Sanchez, G.: PLS path modeling with R. R News, vol. 235 (2013)Google Scholar
  21. 21.
    Skinner, B.: Science and Human Behavior, p. 480. Simon and Schuster, New York (1965)Google Scholar
  22. 22.
    Spittle, M., et al.: Applying self-determination theory to understand the motivation for becoming a physical education teacher. Teach. Teacher Educ. 25(1), 190–197 (2009)CrossRefGoogle Scholar
  23. 23.
    Stibe, A.: Socially influencing systems: persuading people to engage with publicly displayed twitter-based systems (2014)Google Scholar
  24. 24.
    Stibe, A.: Towards a framework for socially influencing systems: meta-analysis of four PLS-SEM based studies. In: MacTavish, T., Basapur, S. (eds.) PERSUASIVE 2015. LNCS, vol. 9072, pp. 172–183. Springer, Heidelberg (2015). doi:10.1007/978-3-319-20306-5_16 CrossRefGoogle Scholar
  25. 25.
    Stibe, A., Larson, K.: Persuasive cities for sustainable wellbeing: quantified communities. In: Younas, M., Awan, I., Kryvinska, N., Strauss, C., Thanh, D. (eds.) MobiWIS 2016. LNCS, vol. 9847, pp. 271–282. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44215-0_22 CrossRefGoogle Scholar
  26. 26.
    Stibe, A., Oinas-Kukkonen, H.: Comparative analysis of recognition and competition as features of social influence using Twitter. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 274–279. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31037-9_26 CrossRefGoogle Scholar
  27. 27.
    Stiglitz, J.E.: Theory of Competition, Incentives and Risk. Palgrave Macmillan, London (1986)CrossRefGoogle Scholar
  28. 28.
    Sundar, S.S., Bellur, S., Jia, H.: Motivational technologies: a theoretical framework for designing preventive health applications. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 112–122. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31037-9_10 CrossRefGoogle Scholar
  29. 29.
    Vansteenkiste, M., Deci, E.L.: Competitively contingent rewards and intrinsic motivation: can losers remain motivated? Motiv. Emot. 27(4), 273–299 (2003)CrossRefGoogle Scholar
  30. 30.
    Wong, K.K.: Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Mark. Bull. 24(1), 1–32 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of SaskatchewanSaskatoonCanada

Personalised recommendations