Skip to main content

Mobilization Strategies: HPC(A) Collections for Autologous Hematopoietic Cell Transplants

  • Chapter
  • First Online:
Best Practices of Apheresis in Hematopoietic Cell Transplantation

Abstract

Autologous hematopoietic cell transplantation with peripheral blood progenitor cells is a potentially curative treatment option for a variety of hematological diseases. Common strategies for peripheral blood CD34+ cell mobilization include the use of hematopoietic growth factors alone or in combination with chemotherapy, resulting in a marked increase of CD34+ cells in the peripheral blood. However, a significant proportion of patients fail to mobilize adequately. To enhance CD34+ cell release from the bone marrow, plerixafor, a chemokine receptor type 4 (CXCR4) antagonist, can be given in addition to growth factors ± chemotherapy.

In this chapter, we aim to show the best approaches to mobilize CD34+ cells and possibilities of optimizing collection yields in patients who mobilize poorly. We list risk factors for poor mobilization and, based on this factors, suggest appropriate mobilization regimens. As the most robust predictive factor for poor CD34+ cell collection is the CD34+ cell count in the peripheral blood before initiation of apheresis, a defined threshold helps to identify patients at risk and allows preemptive intervention to immediate rescue mobilization in these patients.

In addition, we discuss minimal and optimal CD34+ cell collected dose for sustained engraftment and engraftment characteristics associated with lower-than-optimal cell dose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhyankar S, DeJarnette S, Aljitawi O, Ganguly S, Merkel D, McGuirk J (2012) A risk-based approach to optimize autologous hematopoietic stem cell (HSC) collection with the use of plerixafor. Bone Marrow Transplant 47(4):483–487

    Article  CAS  PubMed  Google Scholar 

  • Anderlini P, Donato M, Chan KW, Huh YO, Gee AP, Lauppe MJ et al (1999) Allogeneic blood progenitor cell collection in normal donors after mobilization with filgrastim: the M.D. Anderson Cancer Center experience. Transfusion 39(6):555–560

    Article  CAS  PubMed  Google Scholar 

  • Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    Article  CAS  PubMed  Google Scholar 

  • Bensinger W, DiPersio JF, McCarty JM (2009) Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 43(3):181–195

    Article  CAS  PubMed  Google Scholar 

  • Berger MG, Berger J, Richard C, Jeanpierre S, Nicolini FE, Tournilhac O et al (2008) Preferential sensitivity of hematopoietic (HPs) and mesenchymal (MPs) progenitors to fludarabine suggests impaired bone marrow niche and HP mobilization. Leukemia 22(11):2131–2134

    Article  CAS  PubMed  Google Scholar 

  • Bolwell BJ, Pohlman B, Rybicki L, Sobecks R, Dean R, Curtis J et al (2007) Patients mobilizing large numbers of CD34+ cells (‘super mobilizers’) have improved survival in autologous stem cell transplantation for lymphoid malignancies. Bone Marrow Transplant 40(5):437–441

    Article  CAS  PubMed  Google Scholar 

  • Calandra G, McCarty J, McGuirk J, Tricot G, Crocker SA, Badel K et al (2008) AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin’s lymphoma, Hodgkin’s disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 41(4):331–338

    Article  CAS  PubMed  Google Scholar 

  • Chabannon C, Bijou F, Miclea JM, Milpied N, Grouin JM, Mohty M (2015) A nationwide survey of the use of plerixafor in patients with lymphoid malignancies who mobilize poorly demonstrates the predominant use of the “on-demand” scheme of administration at French autologous hematopoietic stem cell transplant programs. Transfusion 55(9):2149–2157

    Article  CAS  PubMed  Google Scholar 

  • Chen AI, Bains T, Murray S, Knight R, Shoop K, Bubalo J et al (2012) Clinical experience with a simple algorithm for plerixafor utilization in autologous stem cell mobilization. Bone Marrow Transplant 47(12):1526–1529

    Article  CAS  PubMed  Google Scholar 

  • Costa LJ, Alexander ET, Hogan KR, Schaub C, Fouts TV, Stuart RK (2011) Development and validation of a decision-making algorithm to guide the use of plerixafor for autologous hematopoietic stem cell mobilization. Bone Marrow Transplant 46(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • D’Addio A, Curti A, Worel N, Douglas K, Motta MR, Rizzi S et al (2011) The addition of plerixafor is safe and allows adequate PBSC collection in multiple myeloma and lymphoma patients poor mobilizers after chemotherapy and G-CSF. Bone Marrow Transplant 46(3):356–363

    Article  PubMed  CAS  Google Scholar 

  • DiPersio JF, Micallef IN, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E et al (2009a) Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 27(28):4767–4773

    Article  CAS  Google Scholar 

  • DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL et al (2009b) Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113(23):5720–5726

    Article  CAS  PubMed  Google Scholar 

  • Fadini GP, Avogaro A (2013) Diabetes impairs mobilization of stem cells for the treatment of cardiovascular disease: a meta-regression analysis. Int J Cardiol 168(2):892–897

    Article  PubMed  Google Scholar 

  • Genzyme Ltd: Suffolk U. Mozobil [Product information] (2009). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001030/WC500030686.pdf. Accessed 28 Aug 2013

  • Gertz MA (2010) Current status of stem cell mobilization. Br J Haematol 150(6):647–662

    Article  CAS  PubMed  Google Scholar 

  • Gertz MA, Kumar SK, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK et al (2009) Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant 43(8):619–625

    Article  CAS  PubMed  Google Scholar 

  • Gianni AM, Siena S, Bregni M, Tarella C, Stern AC, Pileri A et al (1989) Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet 2(8663):580–585

    Article  CAS  PubMed  Google Scholar 

  • Giralt S, Costa L, Schriber J, DiPersio J, Maziarz R, McCarty J et al (2014) Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Tr 20(3):295–308. English

    Article  Google Scholar 

  • Hill BT, Rybicki L, Smith S, Dean R, Kalaycio M, Pohlman B et al (2011) Treatment with hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone combined with cytarabine and methotrexate results in poor mobilization of peripheral blood stem cells in patients with mantle cell lymphoma. Leuk Lymphoma 52(6):986–993

    Article  CAS  PubMed  Google Scholar 

  • Jillella AP, Ustun C (2004) What is the optimum number of CD34+ peripheral blood stem cells for an autologous transplant? Stem Cells Dev 13(6):598–606

    Article  PubMed  Google Scholar 

  • Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Gastineau DA et al (2007) Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 21(9):2035–2042

    Article  CAS  PubMed  Google Scholar 

  • Mohty M, Ho AD (2011) In and out of the niche: perspectives in mobilization of hematopoietic stem cells. Exp Hematol 39(7):723–729

    Article  CAS  PubMed  Google Scholar 

  • Mohty M, Hubel K, Kroger N, Aljurf M, Apperley J, Basak GW et al (2014) Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: a position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 49(7):865–872. English

    Article  CAS  PubMed  Google Scholar 

  • Olivieri A, Marchetti M, Lemoli R, Tarella C, Iacone A, Lanza F et al (2012) Proposed definition of ‘poor mobilizer’ in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo Italiano Trapianto di Midollo Osseo. Bone Marrow Transplant 47(3):342–351

    Article  CAS  PubMed  Google Scholar 

  • Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P et al (2016) Hematopoietic stem cell transplantation in Europe 2014: more than 40000 transplants annually. Bone Marrow Transplant 51(6):786–792. English

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavone V, Gaudio F, Guarini A, Perrone T, Zonno A, Curci P et al (2002) Mobilization of peripheral blood stem cells with high-dose cyclophosphamide or the DHAP regimen plus G-CSF in non-Hodgkin’s lymphoma. Bone Marrow Transplant 29(4):285–290

    Article  CAS  PubMed  Google Scholar 

  • Perez-Simon JA, Caballero MD, Corral M, Nieto MJ, Orfao A, Vazquez L et al (1998) Minimal number of circulating CD34+ cells to ensure successful leukapheresis and engraftment in autologous peripheral blood progenitor cell transplantation. Transfusion 38(4):385–391

    Article  CAS  PubMed  Google Scholar 

  • Perez-Simon JA, Martin A, Caballero D, Corral M, Nieto MJ, Gonzalez M et al (1999) Clinical significance of CD34+ cell dose in long-term engraftment following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 24(12):1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694

    Article  CAS  PubMed  Google Scholar 

  • Platzbecker U, Prange-Krex G, Bornhauser M, Koch R, Soucek S, Aikele P et al (2001) Spleen enlargement in healthy donors during G-CSF mobilization of PBPCs. Transfusion 41(2):184–189

    Article  CAS  PubMed  Google Scholar 

  • Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Gastineau DA et al (2008) Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: a prospective study. Biol Blood Marrow Transplant 14(7):807–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Pusic I, DiPersio JF (2008) The use of growth factors in hematopoietic stem cell transplantation. Curr Pharm Des 14(20):1950–1961

    Article  CAS  PubMed  Google Scholar 

  • Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF et al (2008) Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 14(9):1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C (2000) Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol Off J Am Soc Clin Oncol 18(6):1360–1377

    Article  CAS  Google Scholar 

  • Stiff PJ (1999) Management strategies for the hard-to-mobilize patient. Bone Marrow Transplant 23(Suppl 2):S29–S33

    Article  PubMed  Google Scholar 

  • Stroncek D, Shawker T, Follmann D, Leitman SF (2003) G-CSF-induced spleen size changes in peripheral blood progenitor cell donors. Transfusion 43(5):609–613

    Article  CAS  PubMed  Google Scholar 

  • Tigue CC, McKoy JM, Evens AM, Trifilio SM, Tallman MS, Bennett CL (2007) Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the Research on Adverse Drug Events and Reports project. Bone Marrow Transplant 40(3):185–192

    Article  CAS  PubMed  Google Scholar 

  • Vellenga E, van Agthoven M, Croockewit AJ, Verdonck LF, Wijermans PJ, van Oers MH et al (2001) Autologous peripheral blood stem cell transplantation in patients with relapsed lymphoma results in accelerated haematopoietic reconstitution, improved quality of life and cost reduction compared with bone marrow transplantation: the Hovon 22 study. Br J Haematol 114(2):319–326

    Article  CAS  PubMed  Google Scholar 

  • Vose JM, Sharp G, Chan WC, Nichols C, Loh K, Inwards D et al (2002) Autologous transplantation for aggressive non-Hodgkin’s lymphoma: results of a randomized trial evaluating graft source and minimal residual disease. J Clin Oncol Off J Am Soc Clin Oncol 20(9):2344–2352

    Article  Google Scholar 

  • Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L et al (1995) An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86(10):3961–3969

    Article  CAS  PubMed  Google Scholar 

  • Worel N, Rosskopf K, Neumeister P, Kasparu H, Nachbaur D, Russ G et al (2011) Plerixafor and granulocyte-colony-stimulating factor (G-CSF) in patients with lymphoma and multiple myeloma previously failing mobilization with G-CSF with or without chemotherapy for autologous hematopoietic stem cell mobilization: the Austrian experience on a named patient program. Transfusion 51(5):968–975

    Article  CAS  PubMed  Google Scholar 

  • Worel N, Fritsch G, Agis H, Bohm A, Engelich G, Leitner GC et al (2017) Plerixafor as preemptive strategy results in high success rates in autologous stem cell mobilization failure. J Clin Apher 32:224–234

    Article  PubMed  Google Scholar 

  • Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K et al (2010) Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant 16(4):490–499

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Worel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Worel, N. (2020). Mobilization Strategies: HPC(A) Collections for Autologous Hematopoietic Cell Transplants. In: Abutalib, S., Padmanabhan, A., Pham, H., Worel, N. (eds) Best Practices of Apheresis in Hematopoietic Cell Transplantation. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-55131-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55131-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55130-2

  • Online ISBN: 978-3-319-55131-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics