Skip to main content

Cryobanking Biomaterials from Wild Animal Species to Conserve Genes and Biodiversity: Relevance to Human Biobanking and Biomedical Research

  • Chapter
  • First Online:
Biobanking of Human Biospecimens

Abstract

When considering the topic of biobanking, it is natural to think first about the collection, storage and use of human biomaterials, a process now considered essential for addressing many diseases and medical conditions. But for more than 25 years, systematic gathering and cryo-storage of biomaterials from diverse wild species have been ongoing to save gene diversity and improve captive (ex situ) and wild (in situ) animal management. Whereas repositories for humans generally are highly specialized toward a targeted medical issue, cryo-storage of non-human biomaterials offers broader opportunities—from helping understand the fundamental biology of unstudied species to enhanced conservation breeding, genomics and veterinary medicine. While promoted for decades, the banking of germplasm, tissue, blood and DNA from wildlife species only recently has been considered by some to be a core function of animal conservation programs. There are commonalities between human and wildlife biobanking programs, including similar needs to harmonize sample and data collection, management and most effective use as well as finding ways to be financially sustainable. We argue here for the need to build bridges between these two ‘repository worlds’, sharing what we do, addressing the substantial remaining challenges and considering the advantages of a bigger, more integrated field of global biobanking science to benefit humans, diverse species and the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker M (2012) Biorepositories: building better biobanks. Nature 486:141

    Article  CAS  PubMed  Google Scholar 

  2. Baker M (2013) Big biology: the 'omes puzzle. Nature 494:416–419

    Article  CAS  PubMed  Google Scholar 

  3. Balvanera P, Siddique I, Dee L et al (2014) Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64:49–57

    Article  Google Scholar 

  4. Ben-Nun IF, Montague SC, Houck ML, Tran HT, Garitaonandia I, Leonardo TR, Wan Y-C, Charter SJ, Laurent LC, Ryder OA, Loring JF (2011) Induced pluripotent stem cells from highly endangered species. Nat Methods 8:829–831

    Article  PubMed  Google Scholar 

  5. Bielanski A (2012) A review of the risk of contamination of semen and embryos during cryopreservation and measures to limit cross-contamination during banking to prevent disease transmission in ET practices. Theriogenology 77:467–482

    Article  CAS  PubMed  Google Scholar 

  6. Clarke AG (2009) The frozen ark project: the role of zoos and aquariums in preserving the genetic material of threatened animals. Int Zoo Yearb 43:222–230

    Article  Google Scholar 

  7. Clement O, Whitney S, Muller-Cohn J, Muller R (2012). Following nature’s lead: generating compounds for stabilizing biomolecules. Biopreserv Biobank 10:395–402

    Google Scholar 

  8. Comizzoli P, Wildt DE (2013) Mammalian fertility preservation through cryobiology: value of classical comparative studies and the need for new preservation options. Reprod Fertil Dev 26:91–98

    Article  PubMed  PubMed Central  Google Scholar 

  9. Comizzoli P, Songsasen N, Wildt DE (2010) Protecting and extending fertility for females of wild and endangered mammals. Cancer Treat Res 156:87–100

    Article  PubMed  PubMed Central  Google Scholar 

  10. Comizzoli P, Songsasen N, Hagedorn M, Wildt DE (2012) Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology 78:1666–1681

    Article  CAS  PubMed  Google Scholar 

  11. Crowe JH, Crowe LM, Wolkers WF et al (2005) Stabilization of dry mammalian cells: lessons from nature. Integr Comp Biol 45:810–820

    Article  CAS  PubMed  Google Scholar 

  12. Edmunds SC, Hunter CI, Smith V, Stoev P, Penev L (2013) Biodiversity research in the “big data” era: GigaScience and Pensoft work together to publish the most data-rich species description. Gigascience 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Graves-Herring JE, Wildt DE, Comizzoli P (2013) Retention of structure and function of the cat germinal vesicle after air-drying and storage at suprazero temperature. Biol Reprod 88:139

    Article  PubMed  PubMed Central  Google Scholar 

  14. Greely HT (2007) The uneasy ethical and legal underpinnings of large-scale genomic biobanks. Annu Rev Genomics Hum Genet 8:343–364

    Article  CAS  PubMed  Google Scholar 

  15. Hagedorn M, Carter V, Martorana K et al (2012) Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One 7:e33354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hawkins AK, O'Doherty KC (2011) “who owns your poop?”: insights regarding the intersection of human microbiome research and the ELSI aspects of biobanking and related studies. BMC Med Genet 4:72

    Google Scholar 

  17. Holt WV (2011) Does apoptosis hold the key to long-term sperm storage mechanisms in vivo? Mol Reprod Dev 78:464–465

    Article  CAS  PubMed  Google Scholar 

  18. Holt WV, Moore HDM (1988) Semen banking – is it now feasible for captive endangered species? Oryx 22:172–178

    Article  Google Scholar 

  19. Holt WV, Pickard AR, Prather RS (2004) Wildlife conservation and reproductive cloning. Reproduction 127:317–324

    Article  CAS  PubMed  Google Scholar 

  20. Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    CAS  PubMed  Google Scholar 

  21. Howard JG, Wildt DE (2009) Approaches and efficacy of artificial insemination in felids and mustelids. Theriogenology 71:130–148

    Article  CAS  PubMed  Google Scholar 

  22. Howard JG, Huang Y, Wang P et al (2006) Role and efficiency of artificial insemination and genome resource banking. In: Wildt DE, Zhang A, Zhang H, Janssen DL, Ellis S (eds) Giant pandas: biology, veterinary medicine and management. Cambridge University Press, New York, pp 469–494

    Chapter  Google Scholar 

  23. Kim M, Lee KH, Yoon SW, Kim BS, Chun J, Yi H (2013) Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform 11:102–113

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kouba AJ, Lloyd RE, Houck ML et al (2013) Emerging trends for biobanking amphibian genetic resources: the hope, reality and challenges for the next decade. Biol Conserv 164:10–21

    Article  Google Scholar 

  25. Lees CM, Wilcken J (2009) Sustaining the ark: the challenges faced by zoos in maintaining viable populations. Int Zoo Yearb 43:6–18

    Article  Google Scholar 

  26. Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC (2012) Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci U S A 109:20859–20864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Lee GY, Lawitts JA et al (2012) Preservation of mouse sperm by convective drying and storing in 3-O-methyl-D-glucose. PLoS One 7:e29924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loi P, Iuso D, Czernik M, Zacchini F, Ptak G (2013) Towards storage of cells and gametes in dry form. Trends Biotechnol 31:688–695

    Article  CAS  PubMed  Google Scholar 

  29. Macleod AK, Liewald DC, McGilchrist MM, Morris AD, Kerr SM, Porteous DJ (2009) Some principles and practices of genetic biobanking studies. Eur Respir J 33:419–425

    Article  CAS  PubMed  Google Scholar 

  30. Rall WF (2003) Avoidance of microbial cross-contamination of cryopreserved gametes, embryos, cells and tissues during storage in liquid nitrogen. Embryologists Newsl 6:2–15

    Google Scholar 

  31. Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1–19

    Article  CAS  PubMed  Google Scholar 

  32. Tanabe AS, Toju H (2013) Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS One 8:e76910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vaught J, Bledsoe M, Watson P (2014) Biobanking on multiple continents: will international coordination follow? Biopreserv Biobank 12:1–2

    Article  PubMed  Google Scholar 

  34. Veprintsev BN, Rott NN (1979) Conserving genetic resources of animal species. Nature 280:633–634

    Article  Google Scholar 

  35. Wildt DE (1997) Genome resource banking: impact on biotic conservation and society. In: Karow AM, Critser J (eds) Tissue banking in reproductive biology. Academic, New York, pp 399–439

    Chapter  Google Scholar 

  36. Wildt DE, Seal US, Rall WF (1993) Genetic resource banks and reproductive technology for wildlife conservation. In: Cloud JG, Thorgaard GH (eds) Genetic conservation of salmonid fishes. Plenum Press, New York, pp 159–173

    Chapter  Google Scholar 

  37. Wildt DE, Rall WF, Critser JK, Monfort SL, Seal US (1997) Genome resource banks: ‘living collections’ for biodiversity conservation. Bioscience 47:689–698

    Article  Google Scholar 

  38. Wildt DE, Ellis S, Janssen D, Buff J (2003) Toward more effective reproductive science in conservation. In: Holt WV, Pickard A, Rodger JC, Wildt DE (eds) Reproductive sciences and integrated conservation. Cambridge University Press, Cambridge, pp 2–20

    Google Scholar 

  39. Wildt DE, Comizzoli P, Pukazhenthi B, Songsasen N (2010) Lessons from biodiversity—the value of nontraditional species to advance reproductive science, conservation, and human health. Mol Reprod Dev 77:397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wildt DE, Pukazhenthi BS, Snodgrass K, Shurter S, Greene L, Rieches R, Beetem D, Sawyer R, Brown JL (2012) Where will zoo animals come from? New ways to get ‘species sustainability’. In: Connect magazine. Association of Zoos and Aquariums, Silver Spring, pp 10–13

    Google Scholar 

  41. Wilson EO (1992) The diversity of life. Harvard University Press, Cambridge, MA

    Google Scholar 

Download references

Acknowledgments

Early development of principles, concepts and advantages related to wildlife biorepositories were fostered by discussions and collaborations with Ulysses S. Seal, William Rall, William Holt, Jonathan Ballou and Robert Lacy. Recent research outcomes described in the authors’ laboratory was supported by the Office of the Director, National Institutes of Health under the Award Number R01OD010948. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Comizzoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Comizzoli, P., Wildt, D.E. (2017). Cryobanking Biomaterials from Wild Animal Species to Conserve Genes and Biodiversity: Relevance to Human Biobanking and Biomedical Research. In: Hainaut, P., Vaught, J., Zatloukal, K., Pasterk, M. (eds) Biobanking of Human Biospecimens. Springer, Cham. https://doi.org/10.1007/978-3-319-55120-3_13

Download citation

Publish with us

Policies and ethics