Skip to main content

Multi-scale Biophysical Principles in Clinical Irreversible Electroporation

  • Chapter
  • First Online:
Irreversible Electroporation in Clinical Practice

Abstract

Irreversible electroporation (IRE) is a focal ablation methodology that involved generating brief, but intense, electric fields in a target tissue. These electric fields operate on the cell level to electrically perforate—or permeabilize—the cell membrane while maintaining the structural integrity of the extracellular components [12]. The development of IRE technology significantly improved the outcomes of patients with late-stage. A study investigating such outcomes found that the median survival of stage III pancreatic cancer patients rose from 6–13 to 24.9 months in a 200-person study following IRE treatment [31], roughly doubling patient posttreatment survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidor I, Arakelyan V, Chernomordik L, Chizmadzhev Y, Pastushenko V, Tarasevich M. 246 – electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg. 1979;6(1):37–52.

    Article  CAS  Google Scholar 

  2. Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM. Tumor ablation with irreversible electroporation. PLoS One. 2007;2(11):e1135.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alberts B. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  4. Bergman TL, Incropera FP, Lavine AS. Fundamentals of heat and mass transfer. Hoboken: Wiley; 2011.

    Google Scholar 

  5. Bhonsle SP, Arena CB, Sweeney DC, Davalos RV. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed Eng Online. 2015;14(Suppl 3):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buchner R, Hefter GT, May PM. Dielectric relaxation of aqueous NaCl solutions. Chem Eur J. 1999;103(1):1–9.

    CAS  Google Scholar 

  7. Campana LG, Cesari M, Dughiero F, Forzan M, Rastrelli M, Rossi CR, Sieni E, Tosi AL. Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens. Med Biol Eng Comput 2016;54.5:773–87.

    Google Scholar 

  8. Čemažar J, Douglas TA, Schmelz EM, Davalos RV. Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures. Biomicrofluidics. 2016;10(1):014109.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Corović S, Pavlin M, Miklavcic D. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng Online. 2007;6:37.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Davalos R, Rubinsky B, Mir L. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry. 2003;61(1–2):99–107.

    Article  CAS  PubMed  Google Scholar 

  11. R. V. Davalos, S. Bhonsle, R. E. Neal. Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy. Prostate. 2015;1118(Jan):n/a–n/a.

    Google Scholar 

  12. Davalos RV, Mir LM, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005;33(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  13. DeBruin KA, Krassowska W. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J. 1999;77(3):1213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dev SB, Dhar D, Krassowska W. Electric field of a six-needle Array electrode used in drug and DNA delivery in vivo: analytical versus numerical solution. IEEE Trans Biomed Eng. 2003;50(11):1296–300.

    Article  PubMed  Google Scholar 

  15. Dunki-Jacobs EM, Philips P, Martin RCG. Evaluation of resistance as a measure of successful tumor ablation during irreversible electroporation of the pancreas. J Am Coll Surg. 2014;218(2):179–87.

    Article  PubMed  Google Scholar 

  16. Edd JF, Davalos RV. Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat. 2007;6(4):275–86.

    Article  PubMed  Google Scholar 

  17. Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41:2251.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia P, Rossmeisl J, Neal REI, Ellis T, Davalos R. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomedica. 2011;10:34.

    Google Scholar 

  19. Gascoyne PRC, Pethig R, Burt JPH, Becker FF. Membrane changes accompanying the induced differentiation of friend murine erythroleukemia cells studies by dielectrophoresis. Biochim Biophys Acta Biomembr. 1993;1149(1):119–26.

    Article  CAS  Google Scholar 

  20. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta. 1988;940:275–87.

    Article  CAS  PubMed  Google Scholar 

  21. Hölzel R, Lamprecht I. Dielectric properties of yeast cells as determined by electrorotation. Biochim Biophys Acta Biomembr. 1992;1104(1):195–200.

    Article  Google Scholar 

  22. Hu Q, Joshi RP, Beskok A. Model study of electroporation effects on the dielectrophoretic response of spheroidal cells. J Appl Phys. 2009;106(2):024701.

    Article  Google Scholar 

  23. Ivorra A, Villemejane J, Mir LM. Electrical modeling of the influence of medium conductivity on electroporation. Phys Chem Chem Phys: PCCP. 2010;12(34):10055–64.

    Article  CAS  PubMed  Google Scholar 

  24. Kashchiev D, Exerowa D. Bilayer lipid membrane permeation and rupture due to hole formation. Biochim Biophys Acta. 1983;732(1):133–45.

    Article  CAS  PubMed  Google Scholar 

  25. Kotnik T, Bobanovic F, Miklavcic D. Applied electric fields-a theoretical analysis. Bioelectrochem Bioenerg. 1997;43:285–91.

    Article  CAS  Google Scholar 

  26. Kotnik T, Miklavcic D. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J. 2000;79(2):670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kranjc M, Bajd F, Sersa I, Woo EJ, Miklavcic D. Ex vivo and in silico feasibility study of monitoring electric field distribution in tissue during electroporation based treatments. PLoS One. 2012;7(9):3–10.

    Article  Google Scholar 

  28. Mahnic-Kalamiza S, Kotnik T, Miklavcic D. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation. BMC Med Educ. 2012;12:102.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marcelja S. Structural contribution to solute-solute interaction. Croat Chem Acta. 1977;49(2):347–58.

    CAS  Google Scholar 

  30. Marcelja S, Radic N. Repulsion of interfaces due to boundary water. Chem Phys Lett. 1976;42(1):129–30.

    Article  CAS  Google Scholar 

  31. Martin RCG, Kwon D, Chalikonda S, Sellers M, Kotz E, Scoggins C, McMasters KM, Watkins K. Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation. Ann Surg. 2015;262(3):486–94.

    Article  PubMed  Google Scholar 

  32. Maxwell JC. A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond. 1865;155(0):459–512.

    Article  Google Scholar 

  33. Melenhorst MCAM, Scheffer HJ, Vroomen LGPH, Kazemier G, van den Tol MP, Meijerink MR. Percutaneous irreversible electroporation of unresectable hilar cholangiocarcinoma (Klatskin tumor): a case report. Cardio Vasc Interv Radiol. 2016;39(1):117–21.

    Article  Google Scholar 

  34. Neal RE, Garcia PA, Robertson JL, Davalos RV. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans Biomed Eng. 2012;59(4):1076–85.

    Article  PubMed  Google Scholar 

  35. Neal RE, Millar JL, Kavnoudias H, Royce P, Rosenfeldt F, Pham A, Smith R, Davalos RV, Thomson KR. In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation. Prostate. 2014;74:458–68.

    Article  PubMed  Google Scholar 

  36. Neff HP. Introductory electromagnetics. New York: Wiley; 1991.

    Google Scholar 

  37. Pavlin M, Kanduser M, Rebersek M, Pucihar G, Hart FX, Magjarevic R, Miklavcic D. Effect of cell electroporation on the conductivity of a cell suspension. Biophys J. 2005;88(6):4378–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Powell KT, Weaver JC. Transient aqueous pores in bilayer membranes: a statistical theory. Bioelectrochem Bioenerg. 1986;211:211–27.

    Article  Google Scholar 

  39. Rols MP, Teissie J. Modulation of electrically induced permeabilization and fusion of Chinese hamster ovary cells by osmotic pressure. Biochemistry. 1990;29(19):4561–7.

    Article  CAS  PubMed  Google Scholar 

  40. Scheffer HJ, Vogel JA, van den Bos W, Neal RE, van Lienden KP, Besselink MGH, van Gemert MJC, van der Geld CWM, Meijerink MR, Klaessens JH, Verdaasdonk RM. The influence of a metal stent on the distribution of thermal energy during irreversible electroporation. PLoS One. 2016;11(2):e0148457.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schwan H. P. Electrical properties of tissue and cell suspensions. In: Advances in biological and medical physics, Vol. 5. New York: Academic; 1957. p. 147.

    Google Scholar 

  42. Wendler JJ, Fischbach K, Ricke J, Jürgens J, Fischbach F, Köllermann J, Porsch M, Baumunk D, Schostak M, Liehr U-b, Pech M. Irreversible electroporation (IRE): standardization of terminology and reporting criteria for analysis and comparison. Pol J Radiol. 2016;81:54–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Sweeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sweeney, D.C., Neal, R.E., Davalos, R.V. (2018). Multi-scale Biophysical Principles in Clinical Irreversible Electroporation. In: Meijerink, M., Scheffer, H., Narayanan, G. (eds) Irreversible Electroporation in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-55113-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55113-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55112-8

  • Online ISBN: 978-3-319-55113-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics