Network Synthesis

Chapter

Abstract

A Hurwitz polynomial (HP) is a polynomial whose coefficients are positive real numbers and whose roots (zeros) are located in the left half (LH)-complex plane or on the axis.

References

  1. 1.
    Chen MZQ, Wang K, Shu Z, Li C (2013) Realizations of a special class of admittances with strictly lower complexity than canonical forms. IEEE Trans Circuits Syst I Regul Pap 60(9):2465–2473MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lamm HYF (1979) Analog and digital filters: Design and realization. Prentice HallGoogle Scholar
  3. 3.
    Balabanian N, Bickart TA, Seshu S (1969) Electrical network theory. Wiley, New JerseyGoogle Scholar
  4. 4.
    Tavsanoglu V (1973) Application of Howitt transformation to two-element-kind networks. Electron Lett 9:206–208CrossRefGoogle Scholar
  5. 5.
    Tavsanoglu V (1976) Transformation of Cauer forms. In: Proceedings of IEEE international symposium on circuits and systems, pp 175–178Google Scholar
  6. 6.
    Murthy KVV, Bedford RE (1978) Transformation between Foster and Cauer equivalent networks. IEEE Trans Circuits Syst CAS-25:238–239Google Scholar
  7. 7.
    Hagopian JD and Frisch IT (1970) Capacitance and resistance minimization in one-port RC networks. IEEE Trans Circuits Theor CT-17:386–392Google Scholar
  8. 8.
    Ali M, Magee D, Dasgupta U (2008) Signal processing overview of ultrasound systems for medical imaging. SPRAB12, Texas InstrumentsGoogle Scholar
  9. 9.
    Zhu Y-S, Chen W-K (2000) Computer-aided design of communication networks (Chapter 9). World Scientific, pp 507–514Google Scholar
  10. 10.
    Yarman BS (2010) Gewertz procedure to generate a minimum function from its even part: generation of minimum function in rational form (Chapter 8). In: Design of ultra-wideband power transfer networks. Wiley, Chichester, UKGoogle Scholar
  11. 11.
    Miyata FA (1952) New system of two-terminal synthesis. J Inst Electr Eng (Japan) 35:211–218Google Scholar
  12. 12.
    Ho CF (1983) Determination of a driving-point function from its specified real part. Int J Electr Eng Educ 20:53–57CrossRefGoogle Scholar
  13. 13.
    Bonanos N, Lilley E (1981) Conductivity relaxations in single crystals of sodium chloride containing suzuki phase precipitates. J Phys Chem Solids 42:943–952CrossRefGoogle Scholar
  14. 14.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy, theory, experiment and applications. Wiley InterscienceGoogle Scholar
  15. 15.
    Brown BH, Tidy J, Boston K, Blackett AD, Smallwood RH, F Sharp F (2000) The relationship between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet 355:892–895CrossRefGoogle Scholar
  16. 16.
    Abdul S, Brown BH, Milnes P, Tidy JA (2006) The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. Int J Gynaecol Cancer 16:1823–1832Google Scholar
  17. 17.
    Balasubramani L, Brown BH, Healey J, Tidy JA (2009) The detection of cervical intraepithelial neoplasia by electrical impedance spectroscopy: the effects of acetic acid and tissue homogeneity. Gynecol Oncol 115(2):267–271CrossRefGoogle Scholar
  18. 18.
    Tidy JA, Brown BH, Healey TJ, Daayana S, Martin M, Prendiville W, Kitchener HC (2013) Accuracy of detection of high-grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy. Br J Obstet Gynaecol 120:400–411CrossRefGoogle Scholar
  19. 19.
    Gonzalez-Correa CA, Brown BH, Smallwood RH, Kalia N, Stoddard CJ, Stephenson TJ, Haggie SJ, Slater DN, Bardhan KD (1999) Virtual biopsies in Barret’s esophagus using an impedance probe. Ann N Y Acad Sci 873:313–321CrossRefGoogle Scholar
  20. 20.
    Nebuya S, Brown BH, Smallwood RH, Milnes P, Waterworth AR, Noshiro M (1999) Measurement of high frequency electrical transfer impedances from biological tissues. Electron Lett 35(23):1985–1987CrossRefGoogle Scholar
  21. 21.
    Walker DC, Brown BH, Hose DR, Smallwood RH (2000) Modelling the electrical impedivity of normal and premalignant cervical tissue. Electron Lett 1603–1604Google Scholar
  22. 22.
    Brown BH, Wilson AJ, Bertemes-Filho P (2000) Bipolar and tetrapolar transfer impedance measurements from a volume conductor. Electron Lett 36(25):2060–2062CrossRefGoogle Scholar
  23. 23.
    Jones DM, Smallwood RH, Hose DR, Brown BH (2001) Constraints on tetrapolar tissue impedance measurements. Electron Lett 37(25):1515–1517CrossRefGoogle Scholar
  24. 24.
    Brown BH (2001) Measurement of the electrical properties of tissue—new developments in impedance imaging and spectroscopy. IEICE Trans Inf Syst E85-D:2–5Google Scholar
  25. 25.
    Gonzalez-Correa CA, Brown BH, Smallwood RH, Stephenson TJ, Stoddard CJ, Bardhan KD (2003) Low frequency electrical bioimpedance for the detection of inflammation and dysplasia in Barrett’s oesophagus. Physiol Meas 24(2):291–296CrossRefGoogle Scholar
  26. 26.
    Gandhi SV, Walker D, Milnes P, Mukherjee S, Brown BH, Anumba DOC (2006) Electrical impedance spectroscopy of the cervix in non-pregnant and pregnant women. Eur J Obstet Gynaecol 129:145–149CrossRefGoogle Scholar
  27. 27.
    Lundin P, Karpefors M, Carllson K, Hansen MB, Ruth M (2011) Bioimpedance spectroscopy: a new tool to assess early esophageal changes linked to gastroesophageal reflux disease? Dis Esophagus 24:462–469CrossRefGoogle Scholar
  28. 28.
    Tidy JA (2015) Utilization of electrical impedance spectroscopy (EIS) in the detection of dysplasia. Oncology News March–April issueGoogle Scholar
  29. 29.
    Pavlovic MM et al (2012) Electrical conductivity of lignocellulose composites loaded with electrodeposited copper powders. Part III. Influence of particle morphology on appearance of electrical conductive layers. Int J Electrochem Sci 7:8894–8904Google Scholar
  30. 30.
    Macdonald DD, Macdonald MU (1986) Application of Kramers-Kronig transformations in the analysis of electrochemical impedance data. Part 1. J Electrochem Soc 132(10):2317Google Scholar
  31. 31.
    Macdonald DD, Macdonald MU (1986) Application of Kramers-Kronig transformations in the analysis of electrochemical impedance data. Part 2. J Electrochem Soc 133(10):2023Google Scholar
  32. 32.
    Esteban JM, Orazem ME (1991) On the application of the Kramers-Kronig relations to evaluate the consistency of electrochemical impedance data. J Electrochem Soc 138Google Scholar
  33. 33.
    Giner-Sanz JJ, Ortega EM, Pérez-Heranz V (2015) Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation. Int J Hydrogen Energy 40:11279–11293CrossRefGoogle Scholar
  34. 34.
    Warwick C (2010) Understanding the Kramers-Kronig relation using a pictorial proof, White paper. Agilent Technologies, Inc. 5990-5266ENGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringYeditepe UniversityIstanbulTurkey

Personalised recommendations