Skip to main content

Optimization of Cyclic Voltammetric Curve Parameters to Measure Lactate Concentration in Urine Samples

  • Conference paper
  • First Online:
Sensors (CNS 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 431))

Included in the following conference series:

  • 1554 Accesses

Abstract

In this work, veal urine dilutions in Hepes-buffered Ringer’s solution (HBRS) are tested by both UV-visible absorption spectroscopy and Cyclic Voltammetry (CV) to assess their viability as mediums for the detection of lactate, through the Lactate Dehydrogenase enzyme (LDH) reaction which involves the formation of NADH. Several data analysis algorithms for the recorded CV data are proposed and compared, in order to optimize the NADH detection in the urine samples dilutions. UV-visible spectroscopy was adopted as reference for NADH quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M.D. Enemark, The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): a review. Vet. J. 176(1), 32–43 (2008). doi:10.1016/j.tvjl.2007.12.021

    Article  Google Scholar 

  2. J.C. Plaizier, D.O. Krause, G.N. Gozho, B.W. McBride, Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J. 176(1), 21–31 (2008). doi:10.1016/j.tvjl.2007.12.016

    Article  Google Scholar 

  3. M.M. Rahman, M.J. Shiddiky, M.A. Rahman, Y.B. Shim, A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal. Biochem. 384(1), 159–165 (2009). doi:10.1016/j.ab.2008.09.030

    Article  Google Scholar 

  4. H.C. Yoon, H. Kim, Electrochemical characteristics of a carbon-based thick-film L-lactate biosensor using L-lactate dehydrogenase. Anal. Chim. Acta 336, 57–65 (1996)

    Article  Google Scholar 

  5. A. Radoi, D. Compagnone, Recent advances in NADH electrochemical sensing design. Bioelectrochemistry (Amsterdam, Netherlands). 76(1–2), 126–34 (2009). http://doi.org/10.1016/j.bioelechem.2009.06.008

  6. J. Hart, S. Wring, Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses. TrAC Trends Anal. Chem. 76(2), 89–103 (1997)

    Article  Google Scholar 

  7. Z.-H. Dai, F.-X. Liu, G.-F. Lu, J.-C. Bao, Electrocatalytic detection of NADH and ethanol at glassy carbon electrode modified with electropolymerized films from methylene green. J. Solid State Electrochem. 12(2), 175–180 (2007). doi:10.1007/s10008-007-0378-1

    Article  Google Scholar 

  8. L. Gorton, Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev. Mol. Biotechnol. 82, 371–392 (2002)

    Article  Google Scholar 

  9. E. Katekawa, F. Maximiano, L.L. Rodrigues, M. Flávia Delbem, S.H. Serrano, Electrochemical oxidation of NADH at a bare glassy carbon electrode in different supporting electrolytes. Anal. Chim. Acta 385(1–3), 345–352 (1999). doi:10.1016/S0003-2670(98)00694-1

    Article  Google Scholar 

  10. K.S. Prasad, J.-C. Chen, C. Ay, J.-M. Zen, Mediatorless catalytic oxidation of NADH at a disposable electrochemical sensor. Sens. Actuators, B: Chem. 123(2), 715–719 (2007). doi:10.1016/j.snb.2006.10.012

    Article  Google Scholar 

  11. P.E. Whitson, H.W. Vanden Born, D.H. Evans, Acquisition and analysis of cyclic voltammetric data. Anal. Chem. 45(8), 1298–1306 (1973). http://doi.org/10.1021/ac60330a016

Download references

Acknowledgements

The research activities reported here have been partially supported by the project «Sistema microelettronico per l’individuazione tempestiva di trattamenti illeciti sugli animali da allevamento», co-founded by Avepa (Veneto Region): Programma di sviluppo rurale, Misura 124 —Cooperazione per lo sviluppo di nuovi prodotti, processi e tecnologie nel settore agricolo, alimentare e forestale. We particularly thank UNICARVE for their contribution to the project activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Rosati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Rosati, G., Scaramuzza, M., Pasqualotto, E., De Toni, A., Paccagnella, A. (2018). Optimization of Cyclic Voltammetric Curve Parameters to Measure Lactate Concentration in Urine Samples. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano, P. (eds) Sensors. CNS 2016. Lecture Notes in Electrical Engineering, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-319-55077-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55077-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55076-3

  • Online ISBN: 978-3-319-55077-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics