Skip to main content

Accurate Intervertebral Disc Localisation and Segmentation in MRI Using Vantage Point Hough Forests and Multi-atlas Fusion

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications for Spine Imaging (CSI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10182))


An accurate method for localising and segmenting intervertebral discs in magnetic resonance (MR) spine imaging is presented. Atlas-based labelling of discs in MRI is challenging due to the small field of view and repetitive structures, which may cause the image registration to converge to a local minimum. To tackle this initialisation problem, our approach uses Vantage Point Hough Forests to automatically and robustly regress landmark positions, which are used to initialise a discrete deformable registration of all training images. An image-adaptive fusion of propagated segmentation labels is obtained by non-negative least-squares regression. Despite its simplicity and without using specific domain knowledge, our approach achieves sub-voxel localisation accuracy of 0.61 mm, Dice segmentation overlaps of nearly 90% (for the training data) and takes less than ten minutes to process a new scan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.


  1. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: computing a local binary descriptor very fast. IEEE PAMI 34(7), 1281–1298 (2012)

    Article  Google Scholar 

  2. Chen, C., Belavy, D., Yu, W., Chu, C., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imag. 34(8), 1719–1729 (2015)

    Article  Google Scholar 

  3. Chen, C., Belavy, D., Zheng, G.: 3D intervertebral disc localization and segmentation from MR images by data-driven regression and classification. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 50–58. Springer, Cham (2014). doi:10.1007/978-3-319-10581-9_7

    Google Scholar 

  4. Donner, R., Menze, B.H., Bischof, H., Langs, G.: Global localization of 3D anatomical structures by pre-filtered hough forests and discrete optimization. Med. Image Anal. 17(8), 1304–1314 (2013)

    Article  Google Scholar 

  5. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory Comput. 8, 415–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2188–2202 (2011)

    Article  Google Scholar 

  7. Gauriau, R., Cuingnet, R., Lesage, D., Bloch, I.: Multi-organ localization with cascaded global-to-local regression and shape prior. Med. Image Anal. 23(1), 70–83 (2015)

    Article  Google Scholar 

  8. Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33454-2_73

    Chapter  Google Scholar 

  9. Glocker, B., Zikic, D., Haynor, D.R.: Robust registration of longitudinal spine CT. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 251–258. Springer, Cham (2014). doi:10.1007/978-3-319-10404-1_32

    Google Scholar 

  10. Heinrich, M.P., Papież, B.W., Schnabel, J.A., Handels, H.: Non-parametric discrete registration with convex optimisation. In: Ourselin, S., Modat, M. (eds.) WBIR 2014. LNCS, vol. 8545, pp. 51–61. Springer, Cham (2014). doi:10.1007/978-3-319-08554-8_6

    Google Scholar 

  11. Heinrich, M.P., Simpson, I.J., Papież, B.W., Brady, M., Schnabel, J.A.: Deformable image registration by combining uncertainty estimates from supervoxel belief propagation. Med. Image Anal. 27, 57–71 (2016)

    Article  Google Scholar 

  12. Heinrich, M.P., Blendowski, M.: Multi-organ segmentation using vantage point forests and binary context features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 598–606. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_69

    Chapter  Google Scholar 

  13. Heinrich, M.P., Papież, B.W., Schnabel, J.A., Handels, H.: Multispectral image registration based on local canonical correlation analysis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 202–209. Springer, Cham (2014). doi:10.1007/978-3-319-10404-1_26

    Google Scholar 

  14. Heinrich, M.P., Wilms, M., Handels, H.: Multi-atlas segmentation using patch-based joint label fusion with non-negative least squares regression. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds.) Patch-MI 2015. LNCS, vol. 9467, pp. 146–153. Springer, Cham (2015). doi:10.1007/978-3-319-28194-0_18

    Chapter  Google Scholar 

  15. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13(3), 471–482 (2009)

    Article  Google Scholar 

  16. Li, S., Yao, J., Navab, N.: Guest editorial special issue on spine imaging, image-based modeling, and image guided intervention. IEEE Trans. Med. Imag. 34(8), 1625–1626 (2015)

    Article  Google Scholar 

  17. Pauly, O., Glocker, B., Criminisi, A., Mateus, D., Möller, A.M., Nekolla, S., Navab, N.: Fast multiple organ detection and localization in whole-body MR dixon sequences. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 239–247. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23626-6_30

    Chapter  Google Scholar 

  18. Potesil, V., Kadir, T., Platsch, G., Brady, M.: Improved anatomical landmark localization in medical images using dense matching of graphical models. In: BMVC, vol. 4, p. 9 (2010)

    Google Scholar 

  19. Richmond, D., Kainmueller, D., Glocker, B., Rother, C., Myers, G.: Uncertainty-driven forest predictors for vertebra localization and segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 653–660. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_80

    Chapter  Google Scholar 

  20. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: SODA 1993, pp. 311–321 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mattias P. Heinrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Heinrich, M.P., Oktay, O. (2016). Accurate Intervertebral Disc Localisation and Segmentation in MRI Using Vantage Point Hough Forests and Multi-atlas Fusion. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds) Computational Methods and Clinical Applications for Spine Imaging. CSI 2016. Lecture Notes in Computer Science(), vol 10182. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55049-7

  • Online ISBN: 978-3-319-55050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics