Skip to main content

Automated Intervertebral Disc Segmentation Using Deep Convolutional Neural Networks

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications for Spine Imaging (CSI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10182))

Abstract

In this paper, we propose to use deep convolutional neural networks to solve the challenging Intervertebral Disc (IVD) segmentation problem. We investigated the influence of four different patch sampling strategies on the performance of the deep convolutional neural networks. Evaluated on the MICCAI 2015 IVD segmentation challenge datasets, our method achieved a mean Dice overlap coefficient of 89.2% and a mean average absolute surface distance of 1.3 mm. The results achieved by our method are comparable with those achieved by the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Modic, M., Ross, J.: Lumbar degenerative disk disease. Radiology 245, 43–61 (2007)

    Article  Google Scholar 

  2. Parizel, P., Goethem, J.V., Van den Hauwe, L., Voormolen, M.: Degenerative disc disease. In: Van Goethem, J.W.M., van den Hauwe, L., Parizel, P.M. (eds.) Spinal Imaging, pp. 127–156. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Chevrefils, C., Cheriet, F., Aubin, C.E., Grimard, G.: Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from MR images. IEEE Trans. Inf. Technol. Biomed. 13, 608–620 (2009)

    Article  Google Scholar 

  4. Michopoulou, S.K., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G., Todd-Pokropek, A.: Atalas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans. Biomed. Eng. 56(9), 2225–2231 (2009)

    Article  Google Scholar 

  5. Ben, A.I., Punithakumar, K., Garvin, G., Romano, W., Li, S.: Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation. In: IPMI, pp. 221–232 (2011)

    Google Scholar 

  6. Neubert, A., Fripp, J., Shen, K., Salvado, O., Schwarz, R., Lauer, L., Engstrom, C., Crozier, S.: Automatic 3D segmentation of vertebral bodies and intervertebral discs from MRI. In: International Conference on Digitial Imaging Computing: Techniques and Applications (2011)

    Google Scholar 

  7. Law, M.W.K., Tay, K., Leung, A., Garvin, G.J., Li, S.: Intervertebral disc segmentation in MR images using anisotropic oriented flux. Med. Image Anal. 17, 43–61 (2013)

    Article  Google Scholar 

  8. Zhan, Y., Maneesh, D., Harder, M., Zhou, X.S.: Robust MR spine detection using hierarchical learning and local articulated model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 141–148. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_18

    Chapter  Google Scholar 

  9. Michael Kelm, B., Wels, M., Zhou, S., Seifert, S., Suehling, M., Zheng, Y., Comaniciu, D.: Spine detection in CT and MR using iterated marginal space learning. Med. Image Anal. 17(8), 1283–1292 (2013)

    Article  Google Scholar 

  10. Chen, C., Belavy, D., Yu, W., Chu, C., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imaging 34(8), 1719–1729 (2015)

    Article  Google Scholar 

  11. Wang, Z., Zhen, X., Tay, K., et al.: Regression segmentation for M3 spinal images. IEEE Trans. Med. Imaging 34(8), 1640–1648 (2015)

    Article  Google Scholar 

  12. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MATH  Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. NIPS 2012, 1097–1105 (2012)

    Google Scholar 

  14. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_31

    Chapter  Google Scholar 

  15. Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). doi:10.1007/978-3-319-10404-1_65

    Google Scholar 

  16. Roth, H.R., Yao, J., Lu, L., et al.: Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications. In: Recent Advances in Computational Methods and Clinical Applications for Spine, Imaging, pp. 3–12 (2015)

    Google Scholar 

  17. Jia, Y., Shelhamer, E., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  18. Hinton, G.E., Srivastava, N., et al.: Improving neural networks by preventing co-adaption of feature detectors. arXiv preprint arXiv:1207.0580.5

  19. Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Deformable model-based segmentation of intervertebral discs from MR spine images by using the SSC descriptor. In: Vrtovec, T., Yao, J., Glocker, B., Klinder, T., Frangi, A., Zheng, G., Li, S. (eds.) CSI 2015. LNCS, vol. 9402, pp. 117–124. Springer, Cham (2016). doi:10.1007/978-3-319-41827-8_11

    Chapter  Google Scholar 

  20. Vrtovec, T., Yao, J., Glocker, B., Klinder, T., Frangi, A., Zheng, G., Li, S. (eds.): CSI 2015. LNCS, vol. 9402. Springer, Cham (2016)

    Google Scholar 

Download references

Acknowledgements

The paper is partially supported by the National Natural Science Funds of China (No. 61571304 and 81571758), and partially supported by the Swiss National Science Foundation Project No. \(205321-157207/1\). The acquisition of original images was supported by the Grant 14431/02/NL/SH2 from the European Space Agency and grant 50WB0720 from the German Aerospace Center (DLR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ji, X., Zheng, G., Belavy, D., Ni, D. (2016). Automated Intervertebral Disc Segmentation Using Deep Convolutional Neural Networks. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds) Computational Methods and Clinical Applications for Spine Imaging. CSI 2016. Lecture Notes in Computer Science(), vol 10182. Springer, Cham. https://doi.org/10.1007/978-3-319-55050-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55050-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55049-7

  • Online ISBN: 978-3-319-55050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics