Skip to main content

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 23))

  • 807 Accesses

Abstract

In this Chapter, we review the fundamental theoretical tools, starting with the space of disordered configurations and its associated dynamical systems, the \(C^*\)-algebra \({\mathcal A}_d\) of the physical observables, together with its Fourier and differential calculus. The latter is provided by a set of commuting derivations \(\partial \) and a trace \({\mathcal T}\). The triple \(({\mathcal A}_d,\partial ,{\mathcal T})\) defines a non-commutative manifold known as the non-commutative BrillouinĀ torus. We reformulate the topological invariants and other response functions in this new framework. We also introduce the magnetic derivations and investigate the behavior of the correlation functions w.r.t. the magnetic fields. This Chapter also fixes the notation and defines the precise settings for the rest of our calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6, 1163ā€“1182 (1994)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Comm. Math. Phys. 157, 245ā€“278 (1993)

    ArticleĀ  ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Aizenman, M., Warzel, S.: Random operators: disorder effects on quantum spectra and dynamics. AMS, Providence (2015)

    BookĀ  MATHĀ  Google ScholarĀ 

  4. Bellissard, J.., In: Proceedings of the Warwick Conference on Operator Algebras. Cambridge University Press, Cambridge (1988)

    Google ScholarĀ 

  5. Bellissard, J.: \(C^\ast \)-algebras in solid state physics. In: Evans, D.E., Takesaki (eds.) Operator Algebras and Applications, vol. II. University Press, Cambridge (1988)

    Google ScholarĀ 

  6. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373ā€“5451 (1994)

    ArticleĀ  ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Blackadar, B.: Operator algebras: theory of \(C^\ast \)-algebras and von Neumann algebras. Springer, Berlin (2006)

    BookĀ  MATHĀ  Google ScholarĀ 

  8. Bourne, C., Rennie, A.: Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases. arXiv:1611.06016 (2016)

  9. Bourne, C., Schulz-Baldes, H.: Application of semifinite index theory to weak topological phases. arXiv:1612.01613 (2016)

  10. Brain, S., Mesland, B., van Suijlekom, W.D.: Gauge theory for spectral triples and the unbounded Kasparov product. J. Noncommut. Geom. 10, 135ā€“206 (2016)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.A.: Index theory for locally compact noncommutative geometries. Mem. AMS. AMS, Providence (2014)

    MATHĀ  Google ScholarĀ 

  12. Carey, A.L., Phillips, J., Rennie, A.: Twisted cyclic theory and an index theory for the gauge invariant KMS state on Cuntz algebras \(O_n\). J. K-theory 6, 339ā€“380 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Carey, A.L., Rennie, A., Tong, K.: Spectral flow invariants and twisted cyclic theory for the Haar state on \(SU_q(2)\). J. Geom. Phys. 59, 1431ā€“1452 (2009)

    ArticleĀ  ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. CancƩs, E., Cazeaux, P., Luskin, M.: Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. arXiv:1611.08043 (2016)

  15. Carr, S., Massatt, D., Fang, S., Cazeaux, P., Luskin, M., Kaxiras, E.: Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. arXiv:1611.00649 (2016)

  16. Connes, A.: Sur la thĆ©orie non commutative de lā€™intĆ©gration, AlgĆ©bres dā€™opĆ©rateurs. In: Lecture Notes in Math, vol. 725. Springer, Berlin (1978)

    Google ScholarĀ 

  17. Connes, A.: Noncommutative geometry. Academic Press, San Diego (1994)

    MATHĀ  Google ScholarĀ 

  18. Davidson, K.R.: C\(^*\)-Algebras by Example. AMS, Providence (1996)

    BookĀ  MATHĀ  Google ScholarĀ 

  19. Davis, E.B.: Spectral theory and differential operators. Cambridge University Press, Cambridge (1995)

    BookĀ  Google ScholarĀ 

  20. Dixmier, J.: \(C^\ast \)-algebras. North-Holland Publishing, New York (1977)

    MATHĀ  Google ScholarĀ 

  21. Dynkin, E.M.: An operator calculus based on the Cauchy-Green formula. Zap. Nauchn. Sem. LOMI 30, 33ā€“40 (1972)

    MathSciNetĀ  Google ScholarĀ 

  22. Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator theoretic aspects of ergodic theory. Springer, Berlin (2015)

    BookĀ  MATHĀ  Google ScholarĀ 

  23. Helffer, B., Sjostrand, J.: Equation de Schrƶdinger avec champ magnetique et equation de harper. Lect. Notes Phys. 345, 118ā€“197 (1989)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  24. Leung, B.: A response theory of topological insulators, Ph.D. thesis, Rutgers University (2013)

    Google ScholarĀ 

  25. Leung, B., Prodan, E.: A non-commutative formula for the isotropic magneto-electric response. J. Phys. A: Math. Theor. 46, 085205 (2012)

    ArticleĀ  ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  26. Neshveyev, S., StĆørmer, E.: Dynamical entropy in operator algebras. Springer, Berlin (2006)

    MATHĀ  Google ScholarĀ 

  27. Pask, D., Rennie, A.: The noncommutative geometry of graph C\(^\ast \)-algebras I: the index theorem. J. Func. Anal. 233, 92ā€“134 (2006)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  28. Pask, D., Rennie, A., Sims, A.: The noncommutative geometry of \(k\)-graph C\(^\ast \)-algebras. J. K-theory: K-theory Appl. Algebra. Geom. Topol. 1, 259ā€“304 (2008)

    Google ScholarĀ 

  29. Pask, D., Rennie, A., Sims, A.: Noncommutative manifolds from graph and \(k\)-graph C\(^\ast \)-algebras. Commun. Math. Phys. 292, 607ā€“636 (2009)

    ArticleĀ  ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  30. Pedersen, G.K.: C\(^*\)-Algebras and their automorphism groups. Academic Press, London (1979)

    MATHĀ  Google ScholarĀ 

  31. Prodan, E.: Intrinsic Chern-Connes characters for crossed products by \(\mathbb{Z}^{d}\). arXiv:1501.03479 (2015)

  32. Prodan, E., Leung, B., Bellissard, J.: The non-commutative \(n\)-th Chern number \((n\ge 1)\). J. Phys. A: Math. Theor. 46, 485202 (2013)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  33. Prodan, E., Schulz-Baldes, H.: Non-commutative odd Chern numbers and topological phases of disordered chiral systems. J. Funct. Anal. 271, 1150ā€“1176 (2016)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  34. Prodan, E., Schulz-Baldes, H.: Bulk and boundary invariants for complex topological insulators: from \(K\)-theory to physics. Springer, Berlin (2016)

    BookĀ  MATHĀ  Google ScholarĀ 

  35. Prodan, E., Schulz-Baldes, H.: Generalized Connes-Chern characters in KK-theory with an application to weak invariants of topological insulators. Rev. Math. Phys. 28, 1650024 (2016)

    Google ScholarĀ 

  36. Qi, X.-L., Hughes, T.L., Zhang, S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  37. Rammal, R., Bellissard, J.: An algebraic semi-classical approach to Bloch electrons in a magnetic field. Journal de Physique 51, 1803ā€“1830 (1990)

    ArticleĀ  Google ScholarĀ 

  38. Ruelle, D.: Statistical Mechanics: Rigorous results. W.A. Benjamin, London (1969)

    MATHĀ  Google ScholarĀ 

  39. Schulz-Baldes, H., Bellissard, J.: A kinetic theory for quantum transport in aperiodic media. J. Stat. Phys. 91, 991ā€“1026 (1998)

    Google ScholarĀ 

  40. Schulz-Baldes, H., Bellissard, J.: Anomalous transport: a mathematical framework. Rev. Math. Phys. 10, 1ā€“46 (1998)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  41. Schulz-Baldes, H., Teufel, S.: Orbital polarization and magnetization for independent particles in disordered media. Commun. Math. Phys. 319, 649ā€“681 (2013)

    ArticleĀ  ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  42. Song, J., Prodan, E.: Quantization of topological invariants under symmetry-breaking disorder. Phys. Rev. B 92, 195119 (2015)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  43. van Suijlekom, W.: Noncommutative geometry and particle physics. Springer, Berlin (2015)

    BookĀ  MATHĀ  Google ScholarĀ 

  44. Williams, D.: Crossed products of \(C^\ast \)-algebras. American Mathematical Society, Providence (2007)

    BookĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Prodan .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 The Author(s)

About this chapter

Cite this chapter

Prodan, E. (2017). Non-commutative Brillouin Torus. In: A Computational Non-commutative Geometry Program for Disordered Topological Insulators. SpringerBriefs in Mathematical Physics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-55023-7_3

Download citation

Publish with us

Policies and ethics