Can Existing Biomedical Ontologies Be More Useful for EHR and CDS?

  • Jesualdo Tomás Fernández-Breis
  • Manuel Quesada-Martínez
  • Astrid Duque-Ramos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10096)

Abstract

The interoperability of Electronic Health Records (EHR) and Clinical Decision Support (CDS) systems is a major challenge in the medical informatics field. International initiatives propose the use of ontologies for bridging both types of systems. The next-generation of EHR and CDS systems are supposed to use ontologies, or at least ontologies should be fundamental for enabling their interoperability. This situation makes necessary to analyze if current ontologies are ready for playing such intended role. In this paper we describe and discuss some important issues that need to be solved in order to have optimal ontologies for such a purpose, such as the need for increasing reuse in ontologies, as well as getting axiomatically richer ontologies. We also describe how our recent research results in the areas of ontology enrichment and ontology evaluation may contribute to such a goal.

Keywords

Electronic Health Records Clinical decision-support systems Semantic interoperability Ontology quality Ontology enrichment 

Notes

Acknowledgements

This work has been partially funded by to the Spanish Ministry of Economy and Competitiveness, the FEDER Programme and by the Fundación Séneca through grants TIN2014-53749-C2-2-R and 19371/PI/14.

References

  1. 1.
    Health Level 7.: Arden Syntax for Medical Logic Systems Standard Version 2.6. Ann Arbor, MI: Health Level 7 (2007)Google Scholar
  2. 2.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for the unification of biology. Nature Genet. 25(1), 25–29 (2000)CrossRefGoogle Scholar
  3. 3.
    Beale, T.: Archetypes: constraint-based domain models for future-proof information systems. In: OOPSLA 2002 Workshop on Behavioural Semantics, vol. 105 (2002)Google Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  5. 5.
    Bouamrane, M.-M., Rector, A., Hurrell, M.: Using owl ontologies for adaptive patient information modelling and preoperative clinical decision support. Knowl. Inform. Syst. 29(2), 405–418 (2011)CrossRefGoogle Scholar
  6. 6.
    Breasted, J.H.: The Edwin Smith Surgical Papyrus: published in facsimile and hieroglyphic transliteration with translation and commentary in two volumes, vol. 3. Chic. UP (1930)Google Scholar
  7. 7.
    Chen, R., Corbal, I.: Guideline definition language (gdl). Release 0.9, pp. 1–23 (2013)Google Scholar
  8. 8.
    Duque-Ramos, A., Fernández-Breis, J.T., Stevens, R., Aussenac-Gilles, R.N., et al.: Oquare: a square-based approach for evaluating the quality of ontologies. J. Res. Pract. Inform. Technol. 43(2), 159 (2011)Google Scholar
  9. 9.
    Duque-Ramos, A., Quesada-Martínez, M., Iniesta-Moreno, M., Fernández-Breis, J.T., Stevens, R.: Supporting the analysis of ontology evolution processes through the combination of static and dynamic scaling functions in oquare. J. Biomed. Semant. 7(1), 63 (2016)Google Scholar
  10. 10.
    Farion, K., Michalowski, W., Wilk, S., O’Sullivan, D.M., Rubin, S., Weiss, D.: Clinical decision support system for point of care use: ontology driven design and software implementation. Meth. Inform. Med. 48(4), 381–390 (2009)CrossRefGoogle Scholar
  11. 11.
    Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the proforma approach. Artif. Intell. Med. 14(1), 157–182 (1998)CrossRefGoogle Scholar
  12. 12.
    Goble, C., Stevens, R.: Stevens.: state of the nation in data integration for bioinformatics. J. Biomed. Inform. 41(5), 687–693 (2008)CrossRefGoogle Scholar
  13. 13.
    Hawkins, M., Ralley, R., Young, J.: A medical panorama: the casebooks project. Book 2.0 4(1–2), 61–69 (2014)Google Scholar
  14. 14.
    Ingram, D.: The good european health record. In: Laires, M.F., Ladeira, M.F., Christensen, J.P. (eds.) Health in the New Communication Age, pp. 66–74. IOS (1995)Google Scholar
  15. 15.
    Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. Int. J. Med. Inform. 77(12), 787–808 (2008)CrossRefGoogle Scholar
  16. 16.
    Isern, D., Sánchez, D., Moreno, A.: Ontology-driven execution of clinical guidelines. Comput. Meth. Programs Biomed. 107(2), 122–139 (2012)CrossRefGoogle Scholar
  17. 17.
    Kalra, D., Lewalle, P., Rector, A., Rodrigues, J.M., Stroetmann, K.A., Surjan, G., Ustun, B., Virtanen, M., Zanstra, P.E.: Semantic interoperability for better health and safer healthcare. Research and Deployment Roadmap for Europe. SemanticHEALTH Project Report, Published by the European Commission (2009). http://ec.europa.eu/information_society/ehealth
  18. 18.
    Martínez-Costa, C., Menárguez-Tortosa, M., Fernández-Breis, J.T., Maldonado, J.A.: A model-driven approach for representing clinical archetypes for semantic web environments. J. Biomed. Inform. 42(1), 150–164 (2009)CrossRefGoogle Scholar
  19. 19.
    Menárguez-Tortosa, M., Fernández-Breis, J.T.: Owl-based reasoning methods for validating archetypes. J. Biomed. Inform. 46(2), 304–317 (2013)CrossRefGoogle Scholar
  20. 20.
    Montero, M.A., Prado, S.: Electronic health record as a knowledge management tool in the scope of health. In: Riaño, D. (ed.) K4HelP 2008. LNCS (LNAI), vol. 5626, pp. 152–166. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03262-2_12 CrossRefGoogle Scholar
  21. 21.
    Mosa, A.S.M., Yoo, I., Sheets, L.: A systematic review of healthcare applications for smartphones. BMC Med. Inform. Decis. Making 12(1), 1 (2012)CrossRefGoogle Scholar
  22. 22.
    Musen, M.A., Middleton, B., Greenes, R.A.: Clinical decision-support systems. In: Shortliffe, E.H., Cimino, J.J. (eds.) Biomedical Informatics, pp. 643–674. Springer, New York (2014)Google Scholar
  23. 23.
    Ohno-Machado, L., Gennari, J.H., Murphy, S.N., Jain, N.L., Tu, S.W., Oliver, D.E., Pattison-Gordon, E., Greenes, R.A., Shortliffe, E.H., Barnett, G.O.: The guideline interchange format. J. Am. Med. Inform. Assoc. 5(4), 357–372 (1998)Google Scholar
  24. 24.
    Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. inform. 46(4), 744–763 (2013)CrossRefGoogle Scholar
  25. 25.
    Quesada-Martínez, M., Fernández-Breis, J.T., Karlsson, D.: Suggesting missing relations in biomedical ontologies based on lexical regularities. Stud. Health Technol. Inform. 228, 384 (2016)Google Scholar
  26. 26.
    Quesada-Martínez, M., Fernández-Breis, J.T., Stevens, R.: Lexical characterization and analysis of the BioPortal ontologies. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS (LNAI), vol. 7885, pp. 206–215. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38326-7_31 CrossRefGoogle Scholar
  27. 27.
    Quesada-Martínez, M., Fernández-Breis, J.T., Stevens, R.: Lexical characterisation of bio-ontologies by the inspection of regularities in labels. Curr. Bioinform. 10(2), 165–176 (2015)CrossRefGoogle Scholar
  28. 28.
    Rector, A., Iannone, L.: Lexically suggest, logically define: quality assurance of the use of qualifiers and expected results of post-coordination in snomed ct. J. Biomed. Inform. 45(2), 199–209 (2012)CrossRefGoogle Scholar
  29. 29.
    Rector, A.L., Johnson, P.D., Tu, S., Wroe, C., Rogers, J.: Interface of inference models with concept and medical record models. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 314–323. Springer, Heidelberg (2001). doi: 10.1007/3-540-48229-6_43 CrossRefGoogle Scholar
  30. 30.
    Schober, D., Tudose, I., Svatek, V., Boeker, M.: Ontocheck: verifying ontology naming conventions and metadata completeness in protégé 4. J. Biomed. Semant. 3(2), 1 (2012)Google Scholar
  31. 31.
    Shahar, Y., Young, O., Shalom, E., Galperin, M., Mayaffit, A., Moskovitch, R., Hessing, A.: A framework for a distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. J. Biomed. Inform. 37(5), 325–344 (2004)CrossRefGoogle Scholar
  32. 32.
    Sherman, R.: Computer system clears up errors, lets nurses get back to nursing: a progress report from children’s hospital, Akron, Ohio. Hosp. Top. 43(10), 44–46 (1965)CrossRefGoogle Scholar
  33. 33.
    Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A., Mungall, C.J., et al.: The obo foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnol. 25(11), 1251–1255 (2007)CrossRefGoogle Scholar
  34. 34.
    Tao, C., Jiang, G., Oniki, T.A., Freimuth, R.R., Zhu, Q., Sharma, D., Pathak, J., Huff, S.M., Chute, C.G.: A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data. J. Am. Med. Inform. Assoc. 20(3), 554–562 (2013)CrossRefGoogle Scholar
  35. 35.
    Third, A.: Hidden semantics: what can we learn from the names in an ontology? In: Proceedings of the Seventh International Natural Language Generation Conference, pp. 67–75. Association for Computational Linguistics (2012)Google Scholar
  36. 36.
    Tu, S.W., Eriksson, H., Gennari, J.H., Shahar, Y., Musen, M.A.: Ontology-based configuration of problem-solving methods and generation of knowledge-acquisition tools: application of protege-ii to protocol-based decision support. Artif. Intell. Med. 7(3), 257–289 (1995)CrossRefGoogle Scholar
  37. 37.
    Warner, H.R., Toronto, A.F., Veasey, L.G., Stephenson, R.: A mathematical approach to medical diagnosis: application to congenital heart disease. Jama 177(3), 177–183 (1961)CrossRefGoogle Scholar
  38. 38.
    Wilk, S., Michalowski, W., Michalowski, M., Farion, K., Hing, M.M., Mohapatra, S.: Mitigation of adverse interactions in pairs of clinical practice guidelines using constraint logic programming. J. Biomed. Inform. 46(2), 341–353 (2013)CrossRefGoogle Scholar
  39. 39.
    Wright, A., Sittig, D.F.: A four-phase model of the evolution of clinical decision support architectures. Int. J. Med. Inform. 77(10), 641–649 (2008)CrossRefGoogle Scholar
  40. 40.
    Yao, W., Kumar, A.: Conflexflow: Integrating flexible clinical pathways into clinical decision support systems using context and rules. Decis. Support Syst. 55(2), 499–515 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jesualdo Tomás Fernández-Breis
    • 1
  • Manuel Quesada-Martínez
    • 1
  • Astrid Duque-Ramos
    • 1
  1. 1.Facultad de Informática, Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMUUniversidad de MurciaMurciaSpain

Personalised recommendations