Advertisement

Kinematic and Dynamic Approaches in Gait Optimization for Humanoid Robot Locomotion

  • Ramil Khusainov
  • Alexandr KlimchikEmail author
  • Evgeni Magid
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 430)

Abstract

Humanoid robot related research keeps attracting many researchers nowadays because of a high potential of bipedal locomotion. While many researchers concentrate on a robot body movement due to its direct contribution to the robot dynamics, the optimality of a leg trajectory has not been studied in details yet. Our paper is targeted to decrease this obvious gap and deals with optimal trajectory planning for bipedal humanoid robot walking. The main attention is paid to maximization of locomotion speed while considering velocity, acceleration and power limitations of each joint. The kinematic and dynamic approaches are used to obtain a desired optimal trajectory. Obtained results provide higher robot performance comparing to commonly used trajectories for control bipedal robots.

Keywords

Humanoids Bipedal walking Optimal trajectory planning 

Notes

Acknowledgements

This research has been supported by Russian Ministry of Education and Science as a part of Scientific and Technological Research and Development Program of Russian Federation for 2014–2020 years (research grant ID RFMEFI60914X0004) and by Android Technics company, the industrial partner of the research.

References

  1. 1.
    Wright, J., Jordanov, I.: Intelligent approaches in locomotion - a review. J. Intell. Robot. Syst. 80, 255–277 (2014)CrossRefGoogle Scholar
  2. 2.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: System Overview and Integration, pp. 2478–2483. IEEE, New York (2008)Google Scholar
  3. 3.
    Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H.-o., Takanishi, A.: Development of a New Humanoid Robot WABIAN-2. pp. 76-81. IEEE, New York (2006)Google Scholar
  4. 4.
    Shamsuddin, S., Ismail, L.I., Yussof, H., Zahari, N.I., Bahari, S., Hashim, H., Jaffar, A.: Humanoid Robot NAO: Review of Control and Motion Exploration. pp. 511–516. IEEE, New York (2011)Google Scholar
  5. 5.
    Feng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization-based full body control for the DARPA robotics challenge. J. Field Robot. 32, 293–312 (2015)CrossRefGoogle Scholar
  6. 6.
    Vukobratovic, M., Borovac, B.: Zero-moment point - thirty five years of its life. Int. J. Hum. Robot. 01, 157–173 (2004)CrossRefGoogle Scholar
  7. 7.
    Shafii, N., Abdolmaleki, A., Lau, N., Reis, L.P.: Development of an Omnidirectional Walk Engine for Soccer Humanoid Robots (2015)Google Scholar
  8. 8.
    Albert, A., Gerth, W.: Analytic path planning algorithms for bipedal robots without a trunk. J. Intell. Robot. Syst. 36, 109–127 (2003)CrossRefGoogle Scholar
  9. 9.
    Sato, T., Sakaino, S., Ohnishi, K.: Real-time walking trajectory generation method with three-mass models at constant body height for three-dimensional biped robots. IEEE Trans. Indust. Electron. 58, 376–383 (2011)CrossRefGoogle Scholar
  10. 10.
    Ha, T., Choi, C.-H.: An effective trajectory generation method for bipedal walking. Robot. Autonom. Syst. 55, 795–810 (2007)CrossRefGoogle Scholar
  11. 11.
    Erik Cuevas, D.Z.: Polynomial Trajectory Algorithm for a Biped Robot (2010)Google Scholar
  12. 12.
    Katoh, R., Mori, M.: Control method of biped locomotion giving asymptotic stability of trajectory. Automatica 20, 405–414 (1984)CrossRefzbMATHGoogle Scholar
  13. 13.
    Furusho, J., Masubuchi, M.: Control of a dynamical biped locomotion system for steady walking. J. Dyn. Syst. Meas. Control 108, 111–118 (1986)CrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, C., Wang, D., Chen, Q.: Central pattern generator inspired control for adaptive walking of biped robots. IEEE Trans. Syst. Man Cybern. Syst. 43, 1206–1215 (2013)CrossRefGoogle Scholar
  15. 15.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2003. ICRA ’03, vol. 1622, pp. 1620–1626 (2003)Google Scholar
  16. 16.
    Katayama, T., Ohki, T., Inoue, T., Kato, T.: Design of an optimal controller for a discrete-time system subject to previewable demand. Int. J. Control 41, 677–699 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18, 523–533 (1999)CrossRefGoogle Scholar
  18. 18.
    Dau, V.-H., Chew, C.-M., Poo, A.-N.: Achieving energy-efficient bipedal walking trajectory through GA-based optimization of key parameters. Int. J. Hum. Robot. 6, 609–629 (2009)CrossRefGoogle Scholar
  19. 19.
    Liu, Z., Wang, L., Chen, C.L.P., Zeng, X., Zhang, Y., Wang, Y.: Energy-efficiency-based gait control system architecture and algorithm for biped robots. IEEE Trans. Syst. Man. Cybern. Part C (Appl. Rev.) 42, 926–933 (2012)Google Scholar
  20. 20.
    Khusainov, R., Klimchik, A., Magid, E.: Swing leg trajectory optimization for a humanoid robot locomotion. In: 2016 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2016)Google Scholar
  21. 21.
    Khusainov, R., Shimchik, I., Afanasyev, I., Magid, E.: Toward a human-like locomotion: modelling dynamically stable locomotion of an anthropomorphic robot in simulink environment. In: 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), pp. 141–148 (2015)Google Scholar
  22. 22.
    Nakamura, M.: Trajectory planning for a leg swing during human walking. IEEE Int. Conf. Syst. Man Cybern. 1, 784–790 (2004)Google Scholar
  23. 23.
    Khusainov, R., Sagitov, A., Afanasyev, I., Magid, E.: Bipedal robot locomotion modelling with virtual height inverted pendulum in Matlab-Simulink and ROS-Gazebo environments. J. Robot. Netw. Artif. Life 3 (2016)Google Scholar
  24. 24.
    Tangpattanakul, P., Artrit, P.: Minimum-time trajectory of robot manipulator using Harmony Search algorithm. In: 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009. ECTI-CON 2009, pp. 354–357 (2009)Google Scholar
  25. 25.
    Si, J., Yang, L., Chao, L., Jian, S., Shengwei, M.: Approximate dynamic programming for continuous state and control problems. In: 17th Mediterranean Conference on Control and Automation, 2009. MED ’09, pp. 1415–1420 (2012)Google Scholar
  26. 26.
    Khusainov, R., Afanasyev, I., Magid, E.: Anthropomorphic robot modelling with virtual height inverted pendulum approach in Simulink: step length and period influence on walking stability. In: The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Japan (2016)Google Scholar
  27. 27.
    Klimchik, A., Pashkevich, A., Caro, S., Chablat, D.: Stiffness matrix of manipulators with passive joints: computational aspects. IEEE Trans. Robot. 28, 955–958 (2012)CrossRefGoogle Scholar
  28. 28.
    Klimchik, A., Chablat, D., Pashkevich, A.: Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings. Mech. Mach. Theory 79, 1–28 (2014)CrossRefGoogle Scholar
  29. 29.
    Klimchik, A., Pashkevich, A., Chablat, D., Hovland, G.: Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robot. Comput. Integr. Manufact. 29, 385–393 (2013)CrossRefGoogle Scholar
  30. 30.
    Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S., Furet, B.: Compliance Error Compensation in Robotic-Based Milling. In: Ferrier, J.-L., Bernard, A., Gusikhin, O., Madani, K. (eds.) Informatics in Control, Automation and Robotics: 9th International Conference, ICINCO 2012 Rome, Italy, July 28–31, 2012 Revised Selected Papers, pp. 197–216. Springer International Publishing, Cham (2014)CrossRefGoogle Scholar
  31. 31.
    Klimchik, A., Furet, B., Caro, S., Pashkevich, A.: Identification of the manipulator stiffness model parameters in industrial environment. Mech. Mach. Theory 90, 1–22 (2015)CrossRefGoogle Scholar
  32. 32.
    Majima, K., Miyazaki, T., Ohishi, K.: Dynamic gait control of biped robot based on kinematics and motion description in Cartesian space. Electr. Eng. Jpn. 129, 96–104 (1999)CrossRefGoogle Scholar
  33. 33.
    Mitobe, K., Capi, G., Nasu, Y.: Control of walking robots based on manipulation of the zero moment point. Robotica 18, 651–657 (2000)CrossRefGoogle Scholar
  34. 34.
    Ude, A., Atkeson, C.G., Riley, M.: Programming full-body movements for humanoid robots by observation. Robot. Autonom. Syst. 47, 93–108 (2004)CrossRefGoogle Scholar
  35. 35.
    Yamaguchi, J., Soga, E., Inoue, S., Takanishi, A.: Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking. In: 1999 IEEE International Conference on Robotics and Automation, 1999. Proceedings, vol. 361, pp. 368–374 (1999)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ramil Khusainov
    • 1
  • Alexandr Klimchik
    • 1
    Email author
  • Evgeni Magid
    • 2
  1. 1.Intelligent Robotic Systems LaboratoryInnopolis UniversityInnopolis CityRussian Federation
  2. 2.Higher Institute of Information Technology & Information SystemsKazan Federal UniversityKazanRussian Federation

Personalised recommendations