Skip to main content

Kinematic and Dynamic Approaches in Gait Optimization for Humanoid Robot Locomotion

  • Chapter
  • First Online:
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 430))

Abstract

Humanoid robot related research keeps attracting many researchers nowadays because of a high potential of bipedal locomotion. While many researchers concentrate on a robot body movement due to its direct contribution to the robot dynamics, the optimality of a leg trajectory has not been studied in details yet. Our paper is targeted to decrease this obvious gap and deals with optimal trajectory planning for bipedal humanoid robot walking. The main attention is paid to maximization of locomotion speed while considering velocity, acceleration and power limitations of each joint. The kinematic and dynamic approaches are used to obtain a desired optimal trajectory. Obtained results provide higher robot performance comparing to commonly used trajectories for control bipedal robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright, J., Jordanov, I.: Intelligent approaches in locomotion - a review. J. Intell. Robot. Syst. 80, 255–277 (2014)

    Article  Google Scholar 

  2. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: System Overview and Integration, pp. 2478–2483. IEEE, New York (2008)

    Google Scholar 

  3. Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H.-o., Takanishi, A.: Development of a New Humanoid Robot WABIAN-2. pp. 76-81. IEEE, New York (2006)

    Google Scholar 

  4. Shamsuddin, S., Ismail, L.I., Yussof, H., Zahari, N.I., Bahari, S., Hashim, H., Jaffar, A.: Humanoid Robot NAO: Review of Control and Motion Exploration. pp. 511–516. IEEE, New York (2011)

    Google Scholar 

  5. Feng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization-based full body control for the DARPA robotics challenge. J. Field Robot. 32, 293–312 (2015)

    Article  Google Scholar 

  6. Vukobratovic, M., Borovac, B.: Zero-moment point - thirty five years of its life. Int. J. Hum. Robot. 01, 157–173 (2004)

    Article  Google Scholar 

  7. Shafii, N., Abdolmaleki, A., Lau, N., Reis, L.P.: Development of an Omnidirectional Walk Engine for Soccer Humanoid Robots (2015)

    Google Scholar 

  8. Albert, A., Gerth, W.: Analytic path planning algorithms for bipedal robots without a trunk. J. Intell. Robot. Syst. 36, 109–127 (2003)

    Article  Google Scholar 

  9. Sato, T., Sakaino, S., Ohnishi, K.: Real-time walking trajectory generation method with three-mass models at constant body height for three-dimensional biped robots. IEEE Trans. Indust. Electron. 58, 376–383 (2011)

    Article  Google Scholar 

  10. Ha, T., Choi, C.-H.: An effective trajectory generation method for bipedal walking. Robot. Autonom. Syst. 55, 795–810 (2007)

    Article  Google Scholar 

  11. Erik Cuevas, D.Z.: Polynomial Trajectory Algorithm for a Biped Robot (2010)

    Google Scholar 

  12. Katoh, R., Mori, M.: Control method of biped locomotion giving asymptotic stability of trajectory. Automatica 20, 405–414 (1984)

    Article  MATH  Google Scholar 

  13. Furusho, J., Masubuchi, M.: Control of a dynamical biped locomotion system for steady walking. J. Dyn. Syst. Meas. Control 108, 111–118 (1986)

    Article  MATH  Google Scholar 

  14. Liu, C., Wang, D., Chen, Q.: Central pattern generator inspired control for adaptive walking of biped robots. IEEE Trans. Syst. Man Cybern. Syst. 43, 1206–1215 (2013)

    Article  Google Scholar 

  15. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2003. ICRA ’03, vol. 1622, pp. 1620–1626 (2003)

    Google Scholar 

  16. Katayama, T., Ohki, T., Inoue, T., Kato, T.: Design of an optimal controller for a discrete-time system subject to previewable demand. Int. J. Control 41, 677–699 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18, 523–533 (1999)

    Article  Google Scholar 

  18. Dau, V.-H., Chew, C.-M., Poo, A.-N.: Achieving energy-efficient bipedal walking trajectory through GA-based optimization of key parameters. Int. J. Hum. Robot. 6, 609–629 (2009)

    Article  Google Scholar 

  19. Liu, Z., Wang, L., Chen, C.L.P., Zeng, X., Zhang, Y., Wang, Y.: Energy-efficiency-based gait control system architecture and algorithm for biped robots. IEEE Trans. Syst. Man. Cybern. Part C (Appl. Rev.) 42, 926–933 (2012)

    Google Scholar 

  20. Khusainov, R., Klimchik, A., Magid, E.: Swing leg trajectory optimization for a humanoid robot locomotion. In: 2016 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2016)

    Google Scholar 

  21. Khusainov, R., Shimchik, I., Afanasyev, I., Magid, E.: Toward a human-like locomotion: modelling dynamically stable locomotion of an anthropomorphic robot in simulink environment. In: 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), pp. 141–148 (2015)

    Google Scholar 

  22. Nakamura, M.: Trajectory planning for a leg swing during human walking. IEEE Int. Conf. Syst. Man Cybern. 1, 784–790 (2004)

    Google Scholar 

  23. Khusainov, R., Sagitov, A., Afanasyev, I., Magid, E.: Bipedal robot locomotion modelling with virtual height inverted pendulum in Matlab-Simulink and ROS-Gazebo environments. J. Robot. Netw. Artif. Life 3 (2016)

    Google Scholar 

  24. Tangpattanakul, P., Artrit, P.: Minimum-time trajectory of robot manipulator using Harmony Search algorithm. In: 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009. ECTI-CON 2009, pp. 354–357 (2009)

    Google Scholar 

  25. Si, J., Yang, L., Chao, L., Jian, S., Shengwei, M.: Approximate dynamic programming for continuous state and control problems. In: 17th Mediterranean Conference on Control and Automation, 2009. MED ’09, pp. 1415–1420 (2012)

    Google Scholar 

  26. Khusainov, R., Afanasyev, I., Magid, E.: Anthropomorphic robot modelling with virtual height inverted pendulum approach in Simulink: step length and period influence on walking stability. In: The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Japan (2016)

    Google Scholar 

  27. Klimchik, A., Pashkevich, A., Caro, S., Chablat, D.: Stiffness matrix of manipulators with passive joints: computational aspects. IEEE Trans. Robot. 28, 955–958 (2012)

    Article  Google Scholar 

  28. Klimchik, A., Chablat, D., Pashkevich, A.: Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings. Mech. Mach. Theory 79, 1–28 (2014)

    Article  Google Scholar 

  29. Klimchik, A., Pashkevich, A., Chablat, D., Hovland, G.: Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robot. Comput. Integr. Manufact. 29, 385–393 (2013)

    Article  Google Scholar 

  30. Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S., Furet, B.: Compliance Error Compensation in Robotic-Based Milling. In: Ferrier, J.-L., Bernard, A., Gusikhin, O., Madani, K. (eds.) Informatics in Control, Automation and Robotics: 9th International Conference, ICINCO 2012 Rome, Italy, July 28–31, 2012 Revised Selected Papers, pp. 197–216. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  31. Klimchik, A., Furet, B., Caro, S., Pashkevich, A.: Identification of the manipulator stiffness model parameters in industrial environment. Mech. Mach. Theory 90, 1–22 (2015)

    Article  Google Scholar 

  32. Majima, K., Miyazaki, T., Ohishi, K.: Dynamic gait control of biped robot based on kinematics and motion description in Cartesian space. Electr. Eng. Jpn. 129, 96–104 (1999)

    Article  Google Scholar 

  33. Mitobe, K., Capi, G., Nasu, Y.: Control of walking robots based on manipulation of the zero moment point. Robotica 18, 651–657 (2000)

    Article  Google Scholar 

  34. Ude, A., Atkeson, C.G., Riley, M.: Programming full-body movements for humanoid robots by observation. Robot. Autonom. Syst. 47, 93–108 (2004)

    Article  Google Scholar 

  35. Yamaguchi, J., Soga, E., Inoue, S., Takanishi, A.: Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking. In: 1999 IEEE International Conference on Robotics and Automation, 1999. Proceedings, vol. 361, pp. 368–374 (1999)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by Russian Ministry of Education and Science as a part of Scientific and Technological Research and Development Program of Russian Federation for 2014–2020 years (research grant ID RFMEFI60914X0004) and by Android Technics company, the industrial partner of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Klimchik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khusainov, R., Klimchik, A., Magid, E. (2018). Kinematic and Dynamic Approaches in Gait Optimization for Humanoid Robot Locomotion. In: Madani, K., Peaucelle, D., Gusikhin, O. (eds) Informatics in Control, Automation and Robotics . Lecture Notes in Electrical Engineering, vol 430. Springer, Cham. https://doi.org/10.1007/978-3-319-55011-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55011-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55010-7

  • Online ISBN: 978-3-319-55011-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics