Skip to main content

An Optimized Data Mining Method to Support Solar Flare Forecast

  • Conference paper
  • First Online:
Information Technology - New Generations

Abstract

Historical Solar X-rays time series are employed to track solar activity and solar flares. High level of X-rays released during Solar Flares can interfere in telecommunication equipment operation. In this sense, it is important the development of computational methods to forecast Solar Flares analyzing the X-ray emissions. In this work, historical Solar X-rays time series sequences are employed to predict future Solar Flares using traditional classification algorithms. However, for large data sequences, the classification algorithms face the problem of “dimensionality curse”, where the algorithms performance and accuracy degrade with the increase in the sequence size. To deal with this problem, we proposed a method that employs feature selection to determine which time instants of a sequence should be considered by the mining process, reducing the processing time and increasing the accuracy of the mining process. Moreover, the proposed method also determines which are the antecedent time instants that most affect a future Solar Flare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66.

    Google Scholar 

  2. Besnard, P., & Hanks, S. (1995). In: Proceedings of the Eleventh Conference on Uncertainty in artificial intelligence, Montreal, 18–20 Aug 1995. Morgan Kaufmann Publishers.

    Google Scholar 

  3. Bobra, M. G., & Couvidat, S. (2015). Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. The Astrophysical Journal, 798(2), 135.

    Article  Google Scholar 

  4. Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers. Palo Alto, CA.: Technical Report HP Laboratories.

    Google Scholar 

  5. Gallagher, P. T., Moon, Y.-J., & Wang, H. (2002). Active-region monitoring and flare forecasting – I. Data processing and first results. Solar Physics, 209(1), 171–183.

    Article  Google Scholar 

  6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). The WEKA data mining software: An update. SIGKDD Explorations, 11(1), 10–18.

    Article  Google Scholar 

  7. Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63–90.

    Article  MATH  Google Scholar 

  8. Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Proceedings of the Ninth International Workshop on Machine learning, College Park (pp. 249–256)

    Google Scholar 

  9. Li, R., & Zhu, J. (2013). Solar flare forecasting based on sequential sunspot data. Research in Astronomy and Astrophysics, 13(9), 1118–1126.

    Article  Google Scholar 

  10. Maimon, O., & Rokach, L. (2010). Data mining and knowledge discovery handbook (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  11. Quinlainn, J. R., & Ross, J. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann Publishers.

    Google Scholar 

  12. Ribeiro, M. X., Balan, A. G. R., Felipe, J. C., Traina, A. J. M., & Traina, C. (2009). Mining statistical association rules to select the most relevant medical image features. In Mining complex data (pp. 113–131). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  13. Scholkopf, B., Burges, C. J. C., & Smola, A. J. (1999). Advances in kernel methods: Support vector learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  14. Thijssen, J. M. (2007). Computational physics (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  15. Yu, D., Huang, X., Wang, H., & Cui, Y. (2009). Short-term solar flare prediction using a sequential supervised learning method. Solar Physics, 255, 91–105.

    Article  Google Scholar 

  16. Yu, D., Huang, X., Hu, Q., Zhou, R., Wang, H., & Cui, Y. (2010). Short-term solar flare prediction using multiresolution predictors. The Astrophysical Journal, 709(1), 321–326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Luisir Díscola Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Junior, S.L.D., Cecatto, J.R., Fernandes, M.M., Ribeiro, M.X. (2018). An Optimized Data Mining Method to Support Solar Flare Forecast. In: Latifi, S. (eds) Information Technology - New Generations. Advances in Intelligent Systems and Computing, vol 558. Springer, Cham. https://doi.org/10.1007/978-3-319-54978-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54978-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54977-4

  • Online ISBN: 978-3-319-54978-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics