Advertisement

SkiROS—A Skill-Based Robot Control Platform on Top of ROS

  • Francesco Rovida
  • Matthew Crosby
  • Dirk Holz
  • Athanasios S. Polydoros
  • Bjarne Großmann
  • Ronald P. A. Petrick
  • Volker Krüger
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 707)

Abstract

The development of cognitive robots in ROS still lacks the support of some key components: a knowledge integration framework and a framework for autonomous mission execution. In this research chapter, we will discuss our skill-based platform SkiROS, that was developed on top of ROS in order to organize robot knowledge and its behavior. We will show how SkiROS offers the possibility to integrate different functionalities in form of skill ‘apps’ and how SkiROS offers services for integrating these skill-apps into a consistent workspace. Furthermore, we will show how these skill-apps can be automatically executed based on autonomous, goal-directed task planning. SkiROS helps the developers to program and port their high-level code over a heterogeneous range of robots, meanwhile the minimal Graphical User Interface (GUI) allows non-expert users to start and supervise the execution. As an application example, we present how SkiROS was used to vertically integrate a robot into the manufacturing system of PSA Peugeot-Citroën. We will discuss the characteristics of the SkiROS architecture which makes it not limited to the automotive industry but flexible enough to be used in other application areas as well. SkiROS has been developed on Ubuntu 14.04 LTS and ROS indigo and it can be downloaded at https://github.com/frovida/skiros. A demonstration video is also available at https://youtu.be/mo7UbwXW5W0.

Keywords

Autonomous robot Planning Skills Software engineering Knowledge integration Kitting task 

References

  1. 1.
    Pedersen, M.R., L. Nalpantidis, R.S. Andersen, C. Schou, S. Bøgh, V. Krüger, and O. Madsen. 2015. Robot skills for manufacturing: From concept to industrial deployment. Robotics and Computer-Integrated Manufacturing. Available online.Google Scholar
  2. 2.
    Holz, D., A. Topalidou-Kyniazopoulou, F. Rovida, M.R. Pedersen, V. Krüger, and S. Behnke. 2015. A skill-based system for object perception and manipulation for automating kitting tasks. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA).Google Scholar
  3. 3.
    Holz, D., A. Topalidou-Kyniazopoulou, J. Stückler, and S. Behnke. 2015. Real-time object detection, localization and verification for fast robotic depalletizing. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 1459–1466.Google Scholar
  4. 4.
    McDermott, D. 2000. The 1998 ai planning systems competition. Artifical Intelligence Magazine 21 (2): 35–55.Google Scholar
  5. 5.
    Kortenkamp, D., and R. Simmons. 2007. Robotic systems architectures and programming. In Springer Handbook of Robotics, ed. B. Siciliano, and O. Khatib, 187–206. Heidelberg: Springer.Google Scholar
  6. 6.
    Arkin, R.C. 1998. Behavior-based Robotics, 1st ed. Cambridge: MIT Press.Google Scholar
  7. 7.
    Brooks, R.A. 1986. A robust layered control system for a mobile robot. Journal of Robotics and Automation 2 (1): 14–23.CrossRefGoogle Scholar
  8. 8.
    Firby, R.J. 1989. Adaptive Execution in Complex Dynamic Worlds. Ph.D. thesis, Yale University, USA.Google Scholar
  9. 9.
    Gat, E. 1998. On three-layer architectures. In Artificial Intelligence and Mobile Robots, MIT Press.Google Scholar
  10. 10.
    Ferrein, A., and G. Lakemeyer. 2008. Logic-based robot control in highly dynamic domains. Robotics and Autonomous Systems 56 (11): 980–991.CrossRefGoogle Scholar
  11. 11.
    Bensalem, S., and M. Gallien. 2009. Toward a more dependable software architecture for autonomous robots. IEEE Robotics and Automation Magazine 1–11.Google Scholar
  12. 12.
    Magnenat, S. 2010. Software integration in mobile robotics, a science to scale up machine intelligence. Ph.D. thesis, École polytechnique fédérale de Lausanne, Switzerland.Google Scholar
  13. 13.
    Vernon, D., C. von Hofsten, and L. Fadiga. 2010. A Roadmap for Cognitive Development in Humanoid Robots. Heidelberg: Springer.Google Scholar
  14. 14.
    Balakirsky, S., Z. Kootbally, T. Kramer, A. Pietromartire, C. Schlenoff, and S. Gupta. 2013. Knowledge driven robotics for kitting applications. Volume 61., Elsevier B.V. 1205–1214Google Scholar
  15. 15.
    Björkelund, A., J. Malec, K. Nilsson, P. Nugues, and H. Bruyninckx. 2012. Knowledge for Intelligent Industrial Robots. In AAAI Spring Symposium on Designing Intelligent Robots: Reintegrating AI.Google Scholar
  16. 16.
    Stenmark, M., and J. Malec. 2013. Knowledge-based industrial robotics. In Scandinavian Conference on Artificial Intelligence.Google Scholar
  17. 17.
    Tenorth, M., and M. Beetz. 2013. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. The International Journal of Robotics Research 32 (5): 566–590.CrossRefGoogle Scholar
  18. 18.
    Beetz, M., L. Mösenlechner, and M. Tenorth. 2010. CRAM - A Cognitive Robot Abstract Machine for everyday manipulation in human environments. In IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 1012–1017.Google Scholar
  19. 19.
    Rovida, F., and V. Krüger. 2015. Design and development of a software architecture for autonomous mobile manipulators in industrial environments. In 2015 IEEE International Conference on Industrial Technology (ICIT).Google Scholar
  20. 20.
    Huckaby, J. 2014. Knowledge Transfer in Robot Manipulation Tasks. Ph.D. thesis, Georgia Institute of Technology, USA.Google Scholar
  21. 21.
    Bøgh, S., O.S. Nielsen, M.R. Pedersen, V. Krüger, and O. Madsen. 2012. Does your robot have skills? In The 43rd International Symposium of Robotics (ISR).Google Scholar
  22. 22.
    Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, and L.A. Stein. 2004. OWL Web Ontology Language reference, 10 Feb 2004. http://www.w3.org/TR/owl-ref/.
  23. 23.
    Lortal, G., S. Dhouib, and S. Gérard. 2011. Integrating ontological domain knowledge into a robotic DSL. In Models in Software Engineering, ed. J. Dingel, and A. Solberg, 401–414. Heidelberg: Springer.CrossRefGoogle Scholar
  24. 24.
    Krüger, V., A. Chazoule, M. Crosby, A. Lasnier, M.R. Pedersen, F. Rovida, L. Nalpantidis, R.P.A. Petrick, C. Toscano, and G. Veiga. 2016. A vertical and cyber-physical integration of cognitive robots in manufacturing. Proceedings of the IEEE 104 (5): 1114–1127.CrossRefGoogle Scholar
  25. 25.
    Crosby, M., F. Rovida, M. Pedersen, R. Petrick, and V. Krueger. 2016. Planning for robots with skills. In Planning and Robotics (PlanRob) workshop at the International Conference on Automated Planning and Scheduling (ICAPS).Google Scholar
  26. 26.
    Sprunk, C., J. Rowekamper, G. Parent, L. Spinello, G.D. Tipaldi, W. Burgard, and M. Jalobeanu. 2014. An experimental protocol for benchmarking robotic indoor navigation. In ISER.Google Scholar
  27. 27.
    Holz, D., and S. Behnke. 2016. Fast edge-based detection and localization of transport boxes and pallets in rgb-d images for mobile robot bin picking. In Proceedings of the 47th International Symposium on Robotics (ISR), Munich, Germany.Google Scholar
  28. 28.
    Polydoros, A.S., B. Großmann, F. Rovida, L. Nalpantidis, and V. Krüger. 2016. Accurate and versatile automation of industrial kitting operations with skiros. In 17th Conference Towards Autonomous Robotic Systems (TAROS), (Sheffield, UK).Google Scholar
  29. 29.
    Stückler, J., and S. Behnke. 2014. Multi-resolution surfel maps for efficient dense 3D modeling and tracking. Journal of Visual Communication and Image Representation 25 (1): 137–147.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francesco Rovida
    • 1
  • Matthew Crosby
    • 3
  • Dirk Holz
    • 2
  • Athanasios S. Polydoros
    • 1
  • Bjarne Großmann
    • 1
  • Ronald P. A. Petrick
    • 3
  • Volker Krüger
    • 1
  1. 1.Aalborg University CopenhagenCopenhagenDenmark
  2. 2.Bonn UniversityBonnGermany
  3. 3.Heriot-Watt UniversityEdinburghUK

Personalised recommendations