Building Software System and Simulation Environment for RoboCup MSL Soccer Robots Based on ROS and Gazebo

  • Junhao Xiao
  • Dan Xiong
  • Weijia Yao
  • Qinghua Yu
  • Huimin Lu
  • Zhiqiang Zheng
Part of the Studies in Computational Intelligence book series (SCI, volume 707)


This chapter presents the lesson learned during constructing the software system and simulation environment for our RoboCup Middle Size League (MSL) robots. The software is built based on ROS, thus the advantages of ROS such as modularity, portability and expansibility are inherited. The tools provided by ROS, such as RVIZ, rosbag, rqt_graph just to name a few, can improve the efficiency of development. Furthermore, the standard communication mechanism (topic and service) and software organization method (package and meta-package) introduces the opportunity for sharing codes among the RoboCup MSL community, which is a fundamental issue to forming hybrid teams. As known, to evaluate new algorithms for multi-robot collaboration on real robots is expensive, which can be done in a proper simulation environment. Particularly, it would be nice if the ROS based software can also be applied to control the simulated robots. As a result, the open source simulator Gazebo is selected, which offers a convenient interface with ROS. In this case, a Gazebo based simulation environment is constructed to visualize the robots and simulate their motions. Furthermore, the simulation has also been used to evaluate new multi-robot collaboration algorithms for our NuBot RoboCup MSL robot team.


Robot soccer Gazebo ROS Multi-robot collaboration Simulation 



Our work is supported by National Science Foundation of China (NO. 61403409 and NO. 61503401), China Postdoctoral Science Foundation (NO. 2014M562648), and graduate school of National University of Defense Technology. All members of the NuBot research group are gratefully acknowledged.


  1. 1.
    Kitano, H., M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. 1997. Robocup: The robot world cup initiative. In Proceedings of the first international conference on Autonomous agents, 340–347. ACM.Google Scholar
  2. 2.
    Kitano, H., M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara. 1997. Robocup: A challenge problem for AI. AI Magazine 18 (1): 73.Google Scholar
  3. 3.
    Kitano, H., M. Asada, I. Noda, and H. Matsubara. 1998. Robocup: robot world cup. IEEE Robotics Automation Magazine 5: 30–36.CrossRefGoogle Scholar
  4. 4.
    Almeida, L., J. Ji, G. Steinbauer, and S. Luke. 2016. RoboCup 2015: Robot World Cup XIX, vol. 9513. Heidelberg: Springer.Google Scholar
  5. 5.
    Bianchi, R.A., H.L. Akin, S. Ramamoorthy, and K. Sugiura. 2015. RoboCup 2014: Robot World Cup XVIII, vol. 8992. Heidelberg: Springer.CrossRefGoogle Scholar
  6. 6.
    Soetens, R., R. van de Molengraft, and B. Cunha. 2014. Robocup msl-history, accomplishments, current status and challenges ahead. In RoboCup 2014: Robot World Cup XVIII, ed. R.A.C. Bianchi, H.L. Akin, S. Ramamoorthy, and K. Sugiura, 624–635. Heidelberg: Springer.Google Scholar
  7. 7.
    Rohmer, E., S.P.N. Singh, and M. Freese. 2013. V-rep: A versatile and scalable robot simulation framework. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 1321–1326.Google Scholar
  8. 8.
    Koenig, N., and A. Howard. 2004. Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings, vol. 3, 2149–2154. IEEE.Google Scholar
  9. 9.
    Michel, O. 1998. Webots: Symbiosis between virtual and real mobile robots. In the First International Conference on Virtual Worlds, (London, UK), 254–263. Springer.Google Scholar
  10. 10.
    Der, R., and G. Martius. 2012. The LpzRobots Simulator. In The Playful Machine Ralf, ed. R. Der, and G. Martius. Heidelberg: Springer.CrossRefGoogle Scholar
  11. 11.
    Harris, A., and J.M. Conrad. 2011. Survey of popular robotics simulators, frameworks, and toolkits. In 2011 Proceedings of IEEE Southeastcon, 243–249.Google Scholar
  12. 12.
    Castillo-Pizarro, P., T.V. Arredondo, and M. Torres-Torriti. 2010. Introductory survey to open-source mobile robot simulation software. In Robotics Symposium and Intelligent Robotic Meeting (LARS), 2010 Latin American, 150–155.Google Scholar
  13. 13.
    Xiong, D., J. Xiao, H. Lu, Z. Zeng, Q. Yu, K. Huang, X. Yi, Z. Zheng, C. Loughlin, and C. Loughlin. 2016. The design of an intelligent soccer-playing robot. Industrial Robot: An International Journal 43 (1).Google Scholar
  14. 14.
    Yao, W., W. Dai, J. Xiao, H. Lu, and Z. Zheng. 2015. A simulation system based on ros and gazebo for robocup middle size league. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 54–59. IEEE.Google Scholar
  15. 15.
    Van De Molengraft, M., and O. Zweigle. 2011. Advances in intelligent robot design for the robocup middle size league. Mechatronics 21 (2): 365.CrossRefGoogle Scholar
  16. 16.
    Nadarajah, S., and K. Sundaraj. 2013. A survey on team strategies in robot soccer: team strategies and role description. Artificial Intelligence Review 40 (3): 271–304.CrossRefGoogle Scholar
  17. 17.
    Nadarajah, S., and K. Sundaraj. 2013. Vision in robot soccer: a review. Artificial Intelligence Review 1–23.Google Scholar
  18. 18.
    Li, X., H. Lu, D. Xiong, H. Zhang, and Z. Zheng. 2013. A survey on visual perception for RoboCup MSL soccer robots. International Journal of Advanced Robotic Systems 10 (110).Google Scholar
  19. 19.
    Nardi, D., I. Noda, F. Ribeiro, P. Stone, O. von Stryk, and M. Veloso. 2014. Robocup soccer leagues. AI Magazine 35 (3): 77–85.Google Scholar
  20. 20.
    Lunenburg, J., R. Soetens, F. Schoenmakers, P. Metsemakers, R. van de Molengraft, and M. Steinbuch. 2013. Sharing open hardware through rop, the robotic open platform. In Proceedings of 17th annual RoboCup International Symposium.Google Scholar
  21. 21.
    Neves, A.J., A.J. Pinho, A. Pereira, B. Cunha, D.A. Martins, F. Santos, G. Corrente, J. Rodrigues, J. Silva, J.L. Azevedo, et al. 2010. CAMBADA soccer team: from robot architecture to multiagent coordination. INTECH Open Access Publisher.Google Scholar
  22. 22.
    Santos, F., L. Almeida, P. Pedreiras, and L.S. Lopes. 2009. A real-time distributed software infrastructure for cooperating mobile autonomous robots. In International Conference on Advanced Robotics, 2009. ICAR 2009, 1–6. IEEE.Google Scholar
  23. 23.
    Santos, F., L. Almeida, and L.S. Lopes. 2008. Self-configuration of an adaptive TDMA wireless communication protocol for teams of mobile robots. In IEEE International Conference on Emerging Technologies and Factory Automation, 2008. ETFA 2008, 1197–1204. IEEE.Google Scholar
  24. 24.
    Lu, H., S. Yang, H. Zhang, and Z. Zheng. 2011. A robust omnidirectional vision sensor for soccer robots. Mechatronics 21 (2): 373–389.CrossRefGoogle Scholar
  25. 25.
    Lu, H., H. Zhang, J. Xiao, F. Liu, and Z. Zheng. 2008. Arbitrary ball recognition based on omni-directional vision for soccer robots. In RoboCup 2008: Robot Soccer World Cup XII, ed. L. Iocchi, H. Matsubara, A. Weitzenfeld, and C. Zhou, 133–144. Heidelberg: Springer.Google Scholar
  26. 26.
    Zeng, Z., H. Lu, and Z. Zheng. 2013. High-speed trajectory tracking based on model predictive control for omni-directional mobile robots. In 2013 25th Chinese Control and Decision Conference (CCDC), 3179–3184. IEEE.Google Scholar
  27. 27.
    Xiao, J., H. Lu, Z. Zeng, D. Xiong, Q. Yu, K. Huang, S. Cheng, X. Yang, W. Dai, J. Ren, et al. 2015. Nubot team description paper 2015. In Proceedings of RoboCup 2015, Hefei, China.Google Scholar
  28. 28.
    Rajaie, H., O. Zweigle, K. Häussermann, U.-P. Käppeler, A. Tamke, and P. Levi. 2011. Hardware design and distributed embedded control architecture of a mobile soccer robot. Mechatronics 21 (2): 455–468.CrossRefGoogle Scholar
  29. 29.
    Zandsteeg, C. 2005. Design of a robocup shooting mechanism. University of Technology Eindhoven.Google Scholar
  30. 30.
    Martinez, C.L., F. Schoenmakers, G. Naus, K. Meessen, Y. Douven, H. van de Loo, D. Bruijnen, W. Aangenent, J. Groenen, B. van Ninhuijs, et al. 2014. Tech united eindhoven, winner robocup 2014 msl. In Robot Soccer World Cup, 60–69. Springer.Google Scholar
  31. 31.
    Jansen, D., and H. Buttner. 2004. Real-time ethernet: the ethercat solution. Computing and Control Engineering 15 (1): 16–21.CrossRefGoogle Scholar
  32. 32.
    Prytz, G. 2008. A performance analysis of EtherCAT and PROFINET IRT. In IEEE International Conference on Emerging Technologies and Factory Automation, 2008. ETFA 2008, 408–415. IEEE.Google Scholar
  33. 33.
    Xiong, D., H. Lu, and Z. Zheng. 2012. A self-localization method based on omnidirectional vision and mti for soccer robots. In 2012 10th World Congress on Intelligent Control and Automation (WCICA), 3731–3736, IEEE.Google Scholar
  34. 34.
    Rusu, R.B., and S. Cousins. 2011. 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA), (Shanghai, China), 9–13 May 2011.Google Scholar
  35. 35.
    Schnabel, R., R. Wahl, and R. Klein. 2007. Efficient ransac for point-cloud shape detection. Computer Graphics Forum 26 (2): 214–226.CrossRefGoogle Scholar
  36. 36.
    Lu, H., Q. Yu, D. Xiong, J. Xiao, and Z. Zheng. 2014. Object motion estimation based on hybrid vision for soccer robots in 3d space. In Proceedings of RoboCup Symposium 2014, (Joao Pessoa, Brazil).Google Scholar
  37. 37.
    Wang, X., H. Zhang, H. Lu, and Z. Zheng. 2010. A new triple-based multi-robot system architecture and application in soccer robots. In Intelligent Robotics and Applications, ed. H. Liu, H. Ding, Z. Xiong, and X. Zhu, 105–115. Heidelberg: Springer.CrossRefGoogle Scholar
  38. 38.
    Cheng, S., J. Xiao, and H. Lu. 2014. Real-time obstacle avoidance using subtargets and Cubic B-spline for mobile robots. In Proceedings of the IEEE International Conference on Information and Automation (ICIA 2014), 634–639. IEEE.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Junhao Xiao
    • 1
  • Dan Xiong
    • 1
  • Weijia Yao
    • 1
  • Qinghua Yu
    • 1
  • Huimin Lu
    • 1
  • Zhiqiang Zheng
    • 1
  1. 1.College of Mechatronics and AutomationNational University of Defense TechnologyChangshaChina

Personalised recommendations