Model Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles Using Robot Operating System

  • Mina Kamel
  • Thomas Stastny
  • Kostas Alexis
  • Roland Siegwart
Part of the Studies in Computational Intelligence book series (SCI, volume 707)


In this chapter, strategies for Model Predictive Control (MPC) design and implementation for Unmaned Aerial Vehicles (UAVs) are discussed. This chapter is divided into two main sections. In the first section, modelling, controller design and implementation of MPC for multi-rotor systems is presented. In the second section, we show modelling and controller design techniques for fixed-wing UAVs. System identification techniques are used to derive an estimate of the system model, while state of the art solvers are employed to solve the optimization problem online. By the end of this chapter, the reader should be able to implement an MPC to achieve trajectory tracking for both multi-rotor systems and fixed-wing UAVs.


Model Predictive Control Trajectory Tracking Prediction Horizon Recede Horizon Control Nonlinear Model Predictive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Px4 autopilot.
  2. 2.
    Navio autopilot.
  3. 3.
    Robot operating system.
  4. 4.
    Mayne, D.Q., J.B. Rawlings, C.V. Rao, and P.O. Scokaert. 2000. Constrained model predictive control: Stability and optimality. Automatica 36 (6): 789–814.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boyd, S., and L. Vandenberghe. 2004. Convex Optimization. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  6. 6.
    Borrelli, F., A. Bemporard, and M. Morari. 2015. Predictive Control for Linear and Hybrid Systems. Cambridge: Cambridge University Press.Google Scholar
  7. 7.
    Ferreau, H., C. Kirches, A. Potschka, H. Bock, and M. Diehl. 2014. qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation 6 (4): 327–363.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Alexis, K., C. Papachristos, R. Siegwart, and A. Tzes. 2015. Robust model predictive flight control of unmanned rotorcraft. Journal of Intelligent & Robotic Systems 1–27.Google Scholar
  9. 9.
    Loefberg, J. 2003. Minimax approaches to robust model predictive control. Ph.D. dissertation Linkoping, Sweden: Linkoping University.Google Scholar
  10. 10.
    Cannon, M., S. Li, Q. Cheng, and B. Kouvaritakis. 2011. Efficient robust output feedback mpc. In Proceedings of the 18th IFAC World Congress, vol. 18, 7957–7962.Google Scholar
  11. 11.
    Kvasnica, M. 2009. Real-Time Model Predictive Control via Multi-Parametric Programming: Theory and Tools. Saarbrücken: VDM Verlag.Google Scholar
  12. 12.
    Mattingley, J., and S. Boyd. 2012. Cvxgen: A code generator for embedded convex optimization. Optimization and Engineering 13 (1): 1–27.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ljung, L. 1999. System identification - Theory for the User. Englewood Cliffs: Prentice-Hall.zbMATHGoogle Scholar
  14. 14.
    Lynen, S., M.W. Achtelik, S. Weiss, M. Chli, and R. Siegwart. 2013. A robust and modular multi-sensor fusion approach applied to mav navigation. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3923–3929. IEEE.Google Scholar
  15. 15.
    vicon systems.
  16. 16.
    Houska, B., H. Ferreau, M. Vukov, and R. Quirynen. 2009–2013. ACADO Toolkit User’s Manual.
  17. 17.
    Morelli, E.A. 2003. Low-order equivalent system identification for the tu-144ll supersonic transport aircraft. Journal of guidance, control, and dynamics 26 (2): 354–362.CrossRefGoogle Scholar
  18. 18.
    Luo, Y., H. Chao, L. Di, and Y. Chen. 2011. Lateral directional fractional order (pi) \(\pi \) control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. Control Theory & Applications, IET 5 (18): 2156–2167.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Beard, R.W., and T.W. McLain. 2013. Implementing dubins airplane paths on fixed-wing uavs. In Contributed Chapter to the Springer Handbook for Unmanned Aerial Vehicles.Google Scholar
  20. 20.
    Stastny, T., A. Dash, and R. Siegwart. 2017. Nonlinear mpc for fixed-wing uav trajectory tracking: Implementation and flight experiments. In AIAA Guidance, Navigation, and Control (GNC) Conference.Google Scholar
  21. 21.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mina Kamel
    • 1
  • Thomas Stastny
    • 1
  • Kostas Alexis
    • 2
  • Roland Siegwart
    • 1
  1. 1.Autonomous System LabETH ZurichZurichSwitzerland
  2. 2.University of NevadaRenoUSA

Personalised recommendations