Skip to main content

Wear and Osteolysis of Polyethylene Bearings

  • Chapter
  • First Online:
Complications after Primary Total Hip Arthroplasty
  • 1356 Accesses

Abstract

Osteolysis and aseptic component loosening have been recognized as common mechanisms for late total hip arthroplasty failure. Particulate wear debris from the arthroplasty-bearing surface initiates a process of macrophage-induced, osteoclast-mediated bone resorption around implants. Radiographic patterns of osteolysis differ around cemented and cementless implants based on the patterns of particle access through the effective joint space, and influence the approaches taken during revision surgery. Revision surgery will address the failed bearing surface to decrease the generation of particular debris. The approach to component revision surgery is based on osteolysis lesion size, arthroplasty component stability, locking mechanism integrity, structural bone availability for biologic fixation of revised components, and patient’s health status. This chapter reviews the current knowledge of osteolysis and presents approaches for both conservative and surgical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clohisy JC, Calvert G, Tull F, McDonald D, Maloney WJ. Reasons for revision hip surgery: a retrospective review. Clin Orthop Relat Res. 2004;429:188–92.

    Article  Google Scholar 

  2. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am. 1992;74(6):849–63.

    Article  CAS  PubMed  Google Scholar 

  3. Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP. The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res. 2007;454:251–61.

    Article  PubMed  Google Scholar 

  4. Jasty M, Bragdon C, Jiranek W, Chandler H, Maloney W, Harris WH. Etiology of osteolysis around porous-coated cementless total hip arthroplasties. Clin Orthop Relat Res. 1994;308:111–26.

    Google Scholar 

  5. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95:3597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quinn JM, Horwood NJ, Elliott J, Gillespie MT, Martin TJ. Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. J Bone Miner Res. 2000;15:1459–66.

    Article  CAS  PubMed  Google Scholar 

  7. Matthews JB, Besong AA, Green TR, Stone MH, Wroblewski BM, Fisher J, Ingham E. Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose. J Biomed Mater Res. 2000;52:296–307.

    Article  CAS  PubMed  Google Scholar 

  8. Orishimo KF, Claus AM, Sychterz CJ, Engh CA. Relationship between polyethylene wear and osteolysis in hips witha second-generation porous-coated cementless cup after seven years of follow-up. J Bone Joint Surg Am. 2003;85(6):1095–9.

    Article  PubMed  Google Scholar 

  9. Gruen TA, McNeice GM, Amstutz HC. “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979;141:17–27.

    Google Scholar 

  10. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;121:20–32.

    Google Scholar 

  11. Patil S, Bergula A, Chen PC, Colwell Jr CW, D’Lima DD. Polyethylene wear and acetabular component orientation. J Bone Joint Surg Am. 2003;85-A(Suppl 4):56–63.

    Article  Google Scholar 

  12. Kennedy JG, Rogers WB, Soffe KE, Sullivan RJ, Griffen DG, Sheehan LJ. Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplast. 1998;13(5):530–4.

    Article  CAS  Google Scholar 

  13. Jasty M, Goetz DD, Bragdon CR, Lee KR, Hanson AE, Elder JR, Harris WH. Wear of polyethylene acetabular components in total hip arthroplasty. An analysis of one hundred and twenty-eight components retrieved at autopsy or revision operations. J Bone Joint Surg Am. 1997;79(3):349–58.

    Article  CAS  PubMed  Google Scholar 

  14. Berry DJ, Barnes CL, Scott RD, Cabanela ME, Poss R. Catastrophic failure of the polyethylene liner of uncemented acetabular components. J Bone Joint Surg Br. 1994;76(4):575–8.

    CAS  PubMed  Google Scholar 

  15. Hopper Jr RH, Young AM, Orishimo KF, Engh Jr CA. Effect of terminal sterilization with gas plasma or gamma radiation on wear of polyethylene liners. J Bone Joint Surg Am. 2003;85-A(3):464–8.

    Article  PubMed  Google Scholar 

  16. Sychterz CJ, Orishimo KF, Engh CA. Sterilization and polyethylene wear: clinical studies to support laboratory data. J Bone Joint Surg Am. 2004;86-A(5):1017–22.

    Article  PubMed  Google Scholar 

  17. Puolakka TJ, Keränen JT, Juhola KA, Pajamäki KJ, Halonen PJ, Nevalainen JK, Saikko V, Lehto MU, Järvinen M. Increased volumetric wear of polyethylene liners with more than 3 years of shelf-life time. Int Orthop. 2003;27(3):153–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. A hip-simulator study. J Bone Joint Surg Am. 2000;82-A(12):1708–25.

    Article  CAS  PubMed  Google Scholar 

  19. Babovic N, Trousdale RT. Total hip arthroplasty using highly cross-linked polyethylene in patients younger than 50 years with minimum 10-year follow-up. J Arthroplast. 2013;28(5):815–7.

    Article  Google Scholar 

  20. Ranawat CS, Ranawat AS, Ramteke AA, Nawabi D, Meftah M. Long-term results of a first-generation annealed highly cross-linked polyethylene in young, Active Patients. Orthopedics. 2016a;22:1–5.

    Google Scholar 

  21. Snir N, Kaye ID, Klifto CS, Hamula MJ, Wolfson TS, Schwarzkopf R, Jaffe FF. 10-year follow-up wear analysis of first-generation highly crosslinked polyethylene in primary total hip arthroplasty. J Arthroplast. 2014;29(3):630–3.

    Article  Google Scholar 

  22. Meftah M, Klingenstein GG, Yun RJ, Ranawat AS, Ranawat CS. Long-term performance of ceramic and metal femoral heads on conventional polyethylene in young and active patients: a matched-pair analysis. J Bone Joint Surg Am. 2013;95(13):1193–7.

    Article  PubMed  Google Scholar 

  23. Sato T, Nakashima Y, Akiyama M, Yamamoto T, Mawatari T, Itokawa T, Ohishi M, Motomura G, Hirata M, Iwamoto Y. Wear resistant performance of highly cross-linked and annealed ultra-high molecular weight polyethylene against ceramic heads in total hip arthroplasty. J Orthop Res. 2012;30(12):2031–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lachiewicz PF, Soileau ES, Martell JM. Wear and osteolysis of highly crosslinked polyethylene at 10 to 14 years: the effect of femoral head size. Clin Orthop Relat Res. 2016;474(2):365–71.

    Article  PubMed  Google Scholar 

  25. Leung S, Naudie D, Kitamura N, Walde T, Engh CA. Computed tomography in the assessment of periacetabular osteolysis. J Bone Joint Surg Am. 2005;87(3):592–7.

    Article  PubMed  Google Scholar 

  26. Maloney WJ, Herzwurm P, Paprosky W, Rubash HE, Engh CA. Treatment of pelvic osteolysis associated with a stable acetabular component inserted without cement as part of a total hip replacement. J Bone Joint Surg Am. 1997;79(11):1628–34.

    Article  CAS  PubMed  Google Scholar 

  27. Lim SJ, Lee KH, Park SH, Park YS. Medium-term results of cementation of a highly cross-linked polyethylene liner into a well-fixed acetabular shell in revision hip arthroplasty. J Arthroplast. 2014;29(3):634–7.

    Article  Google Scholar 

  28. Rivkin G, Kandel L, Qutteineh B, Liebergall M, Mattan Y. Long term results of liner polyethylene cementation technique in revision for Peri-acetabular osteolysis. J Arthroplast. 2015;30(6):1041–3.

    Article  Google Scholar 

  29. Tan TL, Le Duff MJ, Ebramzadeh E, Bhaurla SK, Amstutz HC. Long-term outcomes of liner cementation into a stable retained Shell: a concise follow-up of a previous report. J Bone Joint Surg Am. 2015;97(11):920–4.

    Article  PubMed  Google Scholar 

  30. Park MS, Yoon SJ, Lee JR. Outcomes of polyethylene liner cementation into a fixed metal acetabular shell with minimum follow-up of 7 years. Hip Int. 2015;25(1):61–6.

    Article  PubMed  Google Scholar 

  31. Garvin KL, White TC, Dusad A, Hartman CW, Martell J. Low wear rates seen in THAs with highly crosslinked polyethylene at 9 to 14 years in patients younger than age 50 years. Clin Orthop Relat Res. 2015;473(12):3829–35.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Greiner JJ, Callaghan JJ, Bedard NA, Liu SS, Gao Y, Goetz DD. Fixation and wear with contemporary acetabular components and cross-linked polyethylene at 10-years in patients aged 50 and under. J Arthroplast. 2015;30(9):1577–85.

    Article  Google Scholar 

  33. Ranawat CS, Ranawat AS, Ramteke AA, Nawabi D, Meftah M. Long-term results of a first-generation annealed highly cross-linked polyethylene in young, Active Patients. Orthopedics. 2016b;39(2):e225–9.

    Article  PubMed  Google Scholar 

  34. Kremers HM, Howard JL, Loechler Y, Schleck CD, Harmsen WS, Berry DJ, Cabanela ME, Hanssen AD, Pagnano MW, Trousdale RT, Lewallen DG. Comparative long-term survivorship of uncemented acetabular components in revision total hip arthroplasty. J Bone Joint Surg Am. 2012;94(12):e82.

    Article  PubMed  Google Scholar 

  35. Meneghini RM, Lovro LR, Wallace JM, Ziemba-Davis M. Large metal heads and vitamin E polyethylene increase frictional torque in total hip arthroplasty. J Arthroplast. 2016;31(3):710–4.

    Article  Google Scholar 

  36. Selvarajah E, Hooper G, Grabowski K, Frampton C, Woodfield TB, Inglis G. The rates of wear of X3 highly cross-linked polyethylene at five years when coupled with a 36 mm diameter ceramic femoral head in young patients. Bone Joint J. 2015;97-B(11):1470–4.

    Article  CAS  PubMed  Google Scholar 

  37. Paprosky WG, Perona PG, Lawrence JM. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplast. 1994;9(1):33–44.

    Article  CAS  Google Scholar 

  38. Della Valle CJ, Paprosky WG. The femur in revision total hip arthroplasty evaluation and classification. Clin Orthop Relat Res. 2004;420:55–62.

    Article  Google Scholar 

  39. Della Valle CJ, Paprosky WG. Classification and an algorithmic approach to the reconstruction of femoral deficiency in revision total hip arthroplasty. J Bone Joint Surg Am. 2003;85-A(Suppl 4):1–6.

    Article  Google Scholar 

  40. Del Gaizo DJ, Kancherla V, Sporer SM, Paprosky WG. Tantalum augments for Paprosky IIIA defects remain stable at midterm followup. Clin Orthop Relat Res. 2012;470(2):395–401.

    Article  PubMed  Google Scholar 

  41. Gross AE. Revision arthroplasty of the acetabulum with restoration of bone stock. Clin Orthop Relat Res. 1999;369:198–207.

    Article  Google Scholar 

  42. Ilyas I, Alrumaih HA, Kashif S, Rabbani SA, Faqihi AH. Revision of type III and type IVB acetabular defects with Burch-Schneider anti-Protrusio cages. J Arthroplast. 2015;30(2):259–64.

    Article  Google Scholar 

  43. Schreurs BW, Busch VJ, Welten ML, Verdonschot N, Slooff TJ, Gardeniers JW. Acetabular reconstruction with impaction bone-grafting and a cemented cup in patients younger than fifty years old. J Bone Joint Surg Am. 2004;86-A(11):2385–92.

    Article  PubMed  Google Scholar 

  44. Siegmeth A, Duncan CP, Masri BA, Kim WY, Garbuz DS. Modular tantalum augments for acetabular defects in revision hip arthroplasty. Clin Orthop Relat Res. 2009;467(1):199–205.

    Article  PubMed  Google Scholar 

  45. Sporer SM, Bottros JJ, Hulst JB, Kancherla VK, Moric M, Paprosky WG. Acetabular distraction: an alternative for severe defects with chronic pelvic discontinuity? Clin Orthop Relat Res. 2012;470(11):3156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Taunton MJ, Fehring TK, Edwards P, Bernasek T, Holt GE, Christie MJ. Pelvic discontinuity treated with custom triflange component: a reliable option. Clin Orthop Relat Res. 2012;470(2):428–34.

    Article  PubMed  Google Scholar 

  47. Konan S, Garbuz DS, Masri BA, Duncan CP. Non-modular tapered fluted titanium stems in hip revision surgery: gaining attention. Bone Joint J. 2014;96-B(11 Suppl A):56–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ovesen O, Emmeluth C, Hofbauer C, Overgaard S. Revision total hip arthroplasty using a modular tapered stem with distal fixation: good short-term results in 125 revisions. J Arthroplast. 2010;25(3):348–54.

    Article  Google Scholar 

  49. te Stroet MA, Rijnen WH, Gardeniers JW, van Kampen A, Schreurs BW. The outcome of femoral component revision arthroplasty with impaction allograft bone grafting and a cemented polished Exeter stem: a prospective cohort study of 208 revision arthroplasties with a mean follow-up of ten years. Bone Joint J. 2015;97-B(6):771–9.

    Article  Google Scholar 

  50. Thomsen PB, Jensen NJ, Kampmann J, Bæk HT. Revision hip arthroplasty with an extensively porous-coated stem—excellent long-term results also in severe femoral bone stock loss. Hip Int. 2013;23(4):352–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Keeney MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Keeney, J.A. (2017). Wear and Osteolysis of Polyethylene Bearings. In: Abdel, M., Della Valle, C. (eds) Complications after Primary Total Hip Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-319-54913-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54913-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54911-8

  • Online ISBN: 978-3-319-54913-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics