Advertisement

Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena

  • Rafael Moreno-SánchezEmail author
  • Sara Rodríguez-Enríquez
  • Ricardo Jasso-Chávez
  • Emma Saavedra
  • Jorge D. García-García
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 979)

Abstract

Free-living microorganisms may become suitable models for removal of heavy metals from polluted water bodies, sediments, and soils by using and enhancing their metal accumulating abilities. The available research data indicate that protists of the genus Euglena are a highly promising group of microorganisms to be used in bio-remediation of heavy metal-polluted aerobic and anaerobic acidic aquatic environments. This chapter analyzes the variety of biochemical mechanisms evolved in E. gracilis to resist, accumulate and remove heavy metals from the environment, being the most relevant those involving (1) adsorption to the external cell pellicle; (2) intracellular binding by glutathione and glutathione polymers, and their further compartmentalization as heavy metal-complexes into chloroplasts and mitochondria; (3) polyphosphate biosynthesis; and (4) secretion of organic acids. The available data at the transcriptional, kinetic and metabolic levels on these metabolic/cellular processes are herein reviewed and analyzed to provide mechanistic basis for developing genetically engineered Euglena cells that may have a greater removal and accumulating capacity for bioremediation and recycling of heavy metals.

Keywords

Heavy metals accumulation Bioremediation Phytochelatins Polyphosphates 

Abbreviations

β-Ala

Beta-alanine

Cd-HMWC

High molecular weight complexes of thiol-molecules with Cd2+

Cd-LMWC

Low molecular weight complexes of thiol-molecules with Cd2+

EgPCS

Phytochelatin synthase from E. gracilis

ESTs

Expressed sequence tags

DW

Dry weight

PCs

Phytochelatins

PCS

Phytochelatin synthase

PolyP

Polyphosphates

Notes

Acknowledgements

The present work was partially supported by grants from CONACyT-México (Nos. 107183, 239930, 178638 and 156969) and Instituto de Ciencia y Tecnología del Distrito Federal (No. PICS08-5) to SRE, RMS, ES and RJC.

References

  1. Albergoni V, Piccinni E, Coppellotti O (1980) Response to heavy metals in organisms-I. Excretion and accumulation of physiological and non physiological metals in Euglena gracilis. Comp Biochem Physiol C 67C:121–127PubMedCrossRefGoogle Scholar
  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881PubMedCrossRefGoogle Scholar
  3. Altaş L (2009) Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J Hazard Mater 162:1551–1556PubMedCrossRefGoogle Scholar
  4. Andreeva NA, Kulakovskaya TV, KulaevI S (2004) Purification and properties of exopolyphosphatase from the cytosol of Saccharomyces cerevisiae not encoded by the PPX1 gene. Biochemistry (Mosc) 69:387–393CrossRefGoogle Scholar
  5. Areco MM, Hanela S, Duran J, Afonso Mdos S (2012) Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. J Hazard Mater 213–214:123–132PubMedCrossRefGoogle Scholar
  6. Auger C, Han S, Appanna VP, Thomas SC, Ulibarri G, Appanna VD (2013) Metabolic reengineering invoked by microbial systems to decontaminate aluminum: implications for bioremediation technologies. Biotechnol Adv 31:266–273PubMedCrossRefGoogle Scholar
  7. Avilés C, Loza-Tavera H, Terry N, Moreno-Sánchez R (2003) Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis. Arch Microbiol 180:1–10PubMedCrossRefGoogle Scholar
  8. Avilés C, Torres-Márquez ME, Mendoza-Cózatl D, Moreno-Sánchez R (2005) Time-curse development of the Cd2+ hyper-accumulating phenotype in Euglena gracilis. Arch Microbiol 184:83–92PubMedCrossRefGoogle Scholar
  9. Bachhawat AK, Thakur A, Kaur J, Zulkifli M (2013) Glutathione transporters. Biochim Biophys Acta 1830:3154–3164PubMedCrossRefGoogle Scholar
  10. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152PubMedCrossRefGoogle Scholar
  11. Belcastro M, Marino T, Russo N, Toscano M (2009) The role of glutathione in cadmium ion detoxification: coordination modes and binding properties—a density functional study. J Inorg Biochem 103:50–57PubMedCrossRefGoogle Scholar
  12. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120CrossRefGoogle Scholar
  13. Bi Y, Hubbard C, Purushotham P, Zimmer J (2015) Insights into the structure and function of membrane-integrated processive glycosyltransferase. Curr Opin Struct Biol 34:78–86PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bolchi A, Petrucco S, Tenca PL, Foroni C, Ottonello S (1999) Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutrition status: stereospecific down-regulation by L-cysteine. Plant Mol Biol 39:527–537PubMedCrossRefGoogle Scholar
  15. Brake SS, Dannelly HK, Connors KA, Hasiotis ST (2001) Influence of water chemistry on the distribution of an acidophilic protozoan in an acid mine drainage system at the abandoned Green Valley coal mine, Indiana, USA. Appl Geochem 16:1641–1652CrossRefGoogle Scholar
  16. Bräutigam A, Schaumlöffel D, Preud’homme H, Thondorf I, Wesenberg D (2011) Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. Plant Cell Environ 34:2071–2082PubMedCrossRefGoogle Scholar
  17. Brekken DL, Phillips MA (1998) Trypanosoma brucei gamma-glutamylcysteine synthetase. Characterization of the kinetic mechanism and the role of Cys-319 in cystamine inactivation. J Biol Chem 273:26317–26322PubMedCrossRefGoogle Scholar
  18. Breton A, Surdin-Kerjan Y (1977) Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol 132:224–232PubMedPubMedCentralGoogle Scholar
  19. Brito EM, De la Cruz Barrón M, Caretta CA, Goñi-Urriza M, Andrade LH, Cuevas-Rodríguez G, Malm O, Torres JP, Simon M, Guyoneaud R (2015) Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: investigation of hydrocarbon degradation potential. Sci Total Environ 521–522:1–10PubMedCrossRefGoogle Scholar
  20. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362CrossRefGoogle Scholar
  21. Brown JF, Jones DS, Mills DB, Macalady JL, Burgos WD (2011) Application of a depositional Facies model to an acid mine drainage site. Appl Environ Microbiol 77:545–554PubMedCrossRefGoogle Scholar
  22. Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Sanità di Toppi L, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519PubMedPubMedCentralCrossRefGoogle Scholar
  23. Buetow DE (1962) Differential effects of temperature on the growth of Euglena gracilis. Exp Cell Res 27:137–142PubMedCrossRefGoogle Scholar
  24. Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013) SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616PubMedCrossRefGoogle Scholar
  25. Casiot C, Bruneel O, Personé JC, Leblanc M, Elbaz-Poulichet F (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan Euglena mutabilis, in acidic mine drainage (Carnoulès, France). Sci Total Environ 320:259–267PubMedCrossRefGoogle Scholar
  26. Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172CrossRefGoogle Scholar
  27. Chen HC, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 84:289–296PubMedCrossRefGoogle Scholar
  28. Ciaffi M, Paolacci AR, Celletti S, Catarcione G, Kopriva S, Astolfi S (2013) Transcriptional and physiological changes in the S assimilation pathway due to single or combined S and Fe deprivation in durum wheat (Tricum durum L.) seedlings. J Exp Bot 64:1663–1675PubMedPubMedCentralCrossRefGoogle Scholar
  29. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333PubMedPubMedCentralCrossRefGoogle Scholar
  30. Clemente MR, Bustos-Sanmamed P, Loscos J, James EK, Pérez-Rontomé C, Navascués J, Gay M, Becana M (2012) Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. J Exp Bot 63:3923–3934PubMedPubMedCentralCrossRefGoogle Scholar
  31. Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43:883–894PubMedCrossRefGoogle Scholar
  32. Davis JS, Balinsky JB, Harington JS, Shepherd JB (1973) Assay, purification, properties and mechanism of action of gamma-glutamylcysteine synthetase from the liver of the rat and Xenopus laevis. Biochem J 133:667–678PubMedPubMedCentralCrossRefGoogle Scholar
  33. Delalande O, Desvaux H, Godat E, Valleix A, Junot C, Labarre J, Boulard Y (2010) Cadmium-glutathione solution structures provide new insights into heavy metal detoxification. FEBS J 277:5086–5096PubMedCrossRefGoogle Scholar
  34. Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266PubMedCrossRefGoogle Scholar
  35. Devars S, Avilés C, Cervantes C, Moreno-Sánchez R (2000) Mercury uptake and removal by Euglena gracilis. Arch Microbiol 174:175–180PubMedCrossRefGoogle Scholar
  36. Dobáková E, Flegontov P, Skalický T, Lukeš J (2015) Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol Evol 7:3358–3367PubMedPubMedCentralCrossRefGoogle Scholar
  37. Docampo R, Moreno SN (2008) The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Curr Pharm Des 14:882–888PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dorčák V, Kręźel A (2003) Correlation of acid-base chemistry of phytochelatin PC2 with its coordination properties towards the toxic metal ion Cd(II). Dalton Trans 11:2254–2259Google Scholar
  39. Dos Santos Ferreira V, Rochetta I, Conforti V, Bench S, Feldman R, Levin MJ (2007) Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene 389:136–145PubMedCrossRefGoogle Scholar
  40. Einicker-Lamas M, Mezian GA, Fernandes TB, Silva FL, Guerra F, Miranda K, Attias M, Oliveira MM (2002) Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut 120:779–786PubMedCrossRefGoogle Scholar
  41. Fang J, Ruiz FA, Docampo M, Lou S, Rodrigues JC, Motta LS, Rohloff P, Docampo R (2007) Overexpression of the Zn2+-sensitive soluble exopolyphosphatase from Trypanosoma cruzi depletes polyphosphates and affects osmoregulation. J Biol Chem 282:32501–32510PubMedCrossRefGoogle Scholar
  42. Frendo P, Harrison J, Norman C, Hernandez Jimenez MJ, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant-Microbe Interact 18:254–259PubMedCrossRefGoogle Scholar
  43. Gao Y, Schofield OM, Leustek T (2000) Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant Physiol 123:1087–1096PubMedPubMedCentralCrossRefGoogle Scholar
  44. García-García JD, Rodríguez-Zavala JS, Jasso-Chávez R, Mendoza-Cózatl D, Moreno-Sánchez R (2009) Chromium uptake, retention and reduction in photosynthetic Euglena gracilis. Arch Microbiol 191:431–440PubMedCrossRefGoogle Scholar
  45. García-García JD, Olin-Sandoval V, Saavedra E, Girard L, Hernández G, Moreno-Sánchez R (2012) Sulfate uptake in photosynthetic Euglena gracilis. Mechanisms of regulation and contribution to cysteine homeostasis. Biochim Biophys Acta 1820:1567–1575PubMedCrossRefGoogle Scholar
  46. García-García JD, Girard L, Hernández G, Saavedra E, Pardo JP, Rodríguez-Zavala JS, Encalada R, Reyes-Prieto A, Mendoza-Cózatl DG, Moreno-Sánchez R (2014) Zn-bis-glutathionate is the best co-substrate of the monomeric phytochelatin synthase from the photosynthetic heavy metal-hyperaccumulator Euglena gracilis. Metallomics 6:604–616PubMedCrossRefGoogle Scholar
  47. García-García JD, Sánchez-Thomas R, Moreno-Sánchez R (2016) Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 34:859–873PubMedCrossRefGoogle Scholar
  48. Garlaschi FM, Garlaschi A, Lombardi A, Forti G (1974) Effect of ethanol on the metabolism of Euglena gracilis. Plant Sci Lett 2:29–39CrossRefGoogle Scholar
  49. Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202CrossRefGoogle Scholar
  50. Gillet S, Decottignies P, Chardonnet S, Le Maréchal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynth Res 89:201–211PubMedCrossRefGoogle Scholar
  51. Graz M, Jarosz-Wilkołazka A, Pawlikowska-Pawlega B (2009) Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology. Biometals 22:401–410PubMedCrossRefGoogle Scholar
  52. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676PubMedCrossRefGoogle Scholar
  53. Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gutiérrez RL, Rubio-Arias H, Quintana R, Ortega JA, Gutierrez M (2008) Heavy metals in water of the San Pedro River in Chihuahua, Mexico and its potential health risk. Int J Environ Res Public Health 5:91–98PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1164PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537–3544PubMedPubMedCentralCrossRefGoogle Scholar
  57. Halter D, Casiot C, Heipieper HJ, Plewniak F, Marchal M, Simon S, Arsène-Ploetze F, Bertin PN (2012a) Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis. Appl Microbiol Biotechnol 93:1735–1744PubMedCrossRefGoogle Scholar
  58. Halter D, Goulhen-Chollet F, Gallien S, Casiot C, Hamelin J, Gilard F, Heintz D, Schaeffer C, Carapito C, van Dorsselaer A, Tcherkez G, Arsène-Ploetze F, Bertin PN (2012b) In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis. ISME J 6:1391–1402PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hanna E, Ng KF, MacRae IJ, Bley CJ, Fisher AJ, Segel IH (2004) Kinetic and stability properties of Penicillium chrysogenum ATP sulfurylase missing the C-terminal regulatory domain. J Biol Chem 279:4415–4424PubMedCrossRefGoogle Scholar
  60. Hargreaves JW, Lloyd EJH, Whitton BA (1975) Chemistry and vegetation of highly acidic streams. Freshw Biol 5:563–576CrossRefGoogle Scholar
  61. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92:2355–2388CrossRefGoogle Scholar
  62. Hawes CS, Nicholas DJ (1973) Adenosine 5′-Triphosphate sulfurylase from Saccharomyces cerevisiae. Biochem J 133:541–550PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hell R, Bergmann L (1990) γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180:603–612PubMedCrossRefGoogle Scholar
  64. Hirata K, Tsujimoto Y, Namba T, Ohta T, Hirayanagi N, Miyasaka H, Zenk MH, Miyamoto K (2001) Strong induction of phytochelatin synthesis by zinc in marine green alga Dunaliella tertiolecta. J Biosci Bioeng 92:24–29PubMedCrossRefGoogle Scholar
  65. Hu G, Bi S, Xu G, Zhang Y, Mei X, Li A (2015) Distribution and assessment of heavy metals off the Changjiang River mouth and adjacent area during the past century and the relationship of the heavy metals with anthropogenic activity. Mar Pollut Bull 96:434–440PubMedCrossRefGoogle Scholar
  66. Huang J, Nkrumah PN, Anim DO, Mensah E (2014) E-waste disposal effects on the aquatic environment: Accra, Ghana. Rev Environ Contam Toxicol 229:19–34PubMedGoogle Scholar
  67. Inui H, Miyatake K, Nakano Y, Kitaoka S (1985) The physiological role of oxygen-sensitive pyruvate dehydrogenase in mitochondrial fatty acid synthesis in Euglena gracilis. Arch Biochem Biophys 237:423–429PubMedCrossRefGoogle Scholar
  68. Inui H, Ono K, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate:NADP+ oxidoreductase in Euglena gracilis. J Biol Chem 262:9130–9135PubMedGoogle Scholar
  69. Inui H, Miyatake K, Nakano Y, Kitaoka S (1990) Pyruvate:NADP+ oxidoreductase from Euglena gracilis: mechanism of O2-inactivation of the enzyme and its stability in the aerobe. Arch Biochem Biophys 280:292–298PubMedCrossRefGoogle Scholar
  70. Ishii N, Uchida S (2006) Removal of technetium from solution by algal flagellate Euglena gracilis. J Environ Qual 35:2017–2020PubMedCrossRefGoogle Scholar
  71. Ivušić F, Šantek B (2015) Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioprocess Biosyst Eng 38:1103–1112PubMedCrossRefGoogle Scholar
  72. Jamers A, Blust R, De Coen W, Griffin JL, Jones OA (2013) An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 126:355–364PubMedCrossRefGoogle Scholar
  73. Jarosz-Wilkołazka A, Graz M, Braha B, Menge S, Schlosser D, Krauss GJ (2006) Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals 19:39–49PubMedCrossRefGoogle Scholar
  74. Jasso-Chávez R, Moreno-Sánchez R (2003) Cytosol-mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena. Eur J Biochem 270:4942–4951PubMedCrossRefGoogle Scholar
  75. Jasso-Chávez R, Pacheco-Rosales A, Lira-Silva E, Gallardo-Pérez JC, García N, Moreno-Sánchez R (2010) Toxic effects of Cr(VI) and Cr(III) on energy metabolism of heterotrophic Euglena gracilis. Aquat Toxicol 100:329–338PubMedCrossRefGoogle Scholar
  76. Jensen A, Bro-Rasmunssen F (1992) Environment cadmium in Europe. Rev Environ Contam Toxicol 125:101–181PubMedGoogle Scholar
  77. Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704PubMedPubMedCentralCrossRefGoogle Scholar
  78. Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann N Y Acad Sci 829:242–249PubMedCrossRefGoogle Scholar
  79. Keasling JD, Hupf GA (1996) Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli. Appl Environ Microbiol 62:743–746PubMedPubMedCentralGoogle Scholar
  80. Kobayashi K, Yoshimoto A (1982) Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Acta 705:348–356PubMedCrossRefGoogle Scholar
  81. Kondo N, Isobe M, Imai K, Goto T (1983) Structure of cadystin, the unit-peptide of cadmium-binding peptides induced in a fission yeast, Schizosaccharomyces pombe. Tetrahedron Lett 24:925–928CrossRefGoogle Scholar
  82. Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97:479–495PubMedPubMedCentralCrossRefGoogle Scholar
  83. Koprivova A, Kopriva S (2014) Molecular mechanisms of reguation of sulfate assimilation: first steps on a long road. Front Plant Sci 5:589PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lancilli C, Giacomini B, Lucchini G, Davidian JC, Cocucci M, Sacchi GA, Nocito FF (2014) Cadmium exposure and sulfate limitation reveal differences in the transcriptional control of three sulfate transport (Sultr1;2) genes in Brassica juncea. BMC Plant Biol 14:132PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2- uptake in intact canola (the role of phloem-translocated glutathione). Plant Physiol 111:147–157PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lappartient AG, Vidmar JJ, Leustek T, Glass AD, Touraine B (1999) Inter-organism signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95PubMedCrossRefGoogle Scholar
  87. Lee DC, Park CJ, Yang JE, Jeong YH, Rhee HI (2000) Screening of hexavalent chromium biosorbent from marine algae. Appl Microbiol Biotechnol 54:597–600PubMedCrossRefGoogle Scholar
  88. Lemercier G, Espiau B, Ruiz FA, Vieira M, Luo S, Baltz T, Docampo R, Bakalara N (2004) A pyrophosphatase regulating polyphosphate metabolism in acidocalcisomes is essential for Trypanosoma brucei virulence in mice. J Biol Chem 279:3420–3425PubMedCrossRefGoogle Scholar
  89. León J, Romero LC, Galván F, Vega JM (1987) Purification and physicochemical characterization of O-acetyl-L-serine sulfhydrylase from Chlamydomonas reinhardtii. Plant Sci 53:93–99CrossRefGoogle Scholar
  90. Levinson SL, Jacobs LH, Krulwich TA, Li HC (1975) Purification and characterization of a polyphosphate kinase from Arthrobacter atrocyaneus. J Gen Microbiol 88:65–74CrossRefGoogle Scholar
  91. Li JJ, Saidha T, Schiff JA (1991) Purification and properties of two forms of ATP sulfurylase from Euglena. Biochim Biophys Acta 1078:68–76PubMedCrossRefGoogle Scholar
  92. Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797PubMedCrossRefGoogle Scholar
  93. Linder SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF (2007) NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. Appl Environ Microbiol 73:5026–5033CrossRefGoogle Scholar
  94. Lira-Silva E, Ramírez-Lima IS, Olín-Sandoval V, García-García JD, García-Contreras R, Moreno-Sánchez R, Jasso-Chávez R (2011) Removal, accumulation and resistance to chromium in heterotrophic Euglena gracilis. J Hazard Mater 193:216–224PubMedCrossRefGoogle Scholar
  95. Lira-Silva E, Santiago-Martínez MG, García-Contreras R, Zepeda-Rodríguez A, Marín-Hernández A, Moreno-Sánchez R, Jasso-Chávez R (2013) Cd2+ resistance mechanisms in Methanosarcina acetivorans involve the increase in the coenzyme M content and induction of biofilm synthesis. Environ Microbiol Rep 5:799–808PubMedCrossRefGoogle Scholar
  96. Liu X, Wu FH, Li JX, Chen J, Wang GH, Wang WH, Hu WJ, Gao LJ, Wang ZL, Chen JH, Simon M, Zheng HL (2016) Glutathione homeostasis and Cd tolerance in the Arabidopsis sultr1;1-sultr1;2 double mutant with limiting sulfate supply. Plant Cell Rep 35:397–413PubMedCrossRefGoogle Scholar
  97. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3453PubMedCrossRefGoogle Scholar
  98. Lueder DV, Phillips MA (1996) Characterization of Trypanosoma brucei gamma-glutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione (diglutathionylspermidine). J Biol Chem 271:17485–17490PubMedCrossRefGoogle Scholar
  99. Luís AT, Teixeira P, Almeida SF, Matos JX, da Silva EF (2011) Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci Total Environ 409:4312–4325PubMedCrossRefGoogle Scholar
  100. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278PubMedCrossRefGoogle Scholar
  101. Marentes E, Rauser WE (2007) Different proportions of cadmium occur as Cd-binding phytochelatin complexes in plants. Physiol Plant 131:291–301PubMedGoogle Scholar
  102. Maruyama-Nakashita A, Watanabe-Takahashi A, Inoue E, Yamaya T, Saito K, Takahashi H (2015) Sulfur-responsive elements in the 3′-nontranscribed intergenic region are essential for the induction of sulfate transporter 2;1 gene expression in Arabidopsis roots sulfur deficiency. Plant Cell 27:1279–1296PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mata YN, Blazquez ML, Ballester A, González F, Muñoz JA (2009a) Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J Hazard Mater 163:555–562PubMedCrossRefGoogle Scholar
  104. Mata YN, Torres E, Blázquez ML, Ballester A, González F, Muñoz JA (2009b) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618PubMedCrossRefGoogle Scholar
  105. Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888PubMedPubMedCentralCrossRefGoogle Scholar
  106. Matsuda YC, Colman B (1995) Characterization of sulfate transport in the green alga Chlorella ellipsoidea. Plant Cell Physiol 36:1291–1296Google Scholar
  107. Matsuda F, Hayashi M, Kondo A (2011) Comparative profiling analysis of central metabolites in Euglena gracilis under various cultivation conditions. Biosci Biotechnol Biochem 75:2253–2256PubMedCrossRefGoogle Scholar
  108. McComb JQ, Han FX, Rogers C, Thomas C, Arslan Z, Ardeshir A, Tchounwou PB (2015) Trace elements and heavy metals in the Gran Bay National Estuarine Reserve in the northern Gulf of Mexico. Mar Pollut Bull 99:61–69PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152PubMedCrossRefGoogle Scholar
  110. Mendoza-Cózatl DG, Moreno-Sánchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238:919–936PubMedCrossRefGoogle Scholar
  111. Mendoza-Cózatl D, Devars S, Loza-Tavera H, Moreno-Sánchez R (2002) Cadmium accumulation in the chloroplast of Euglena gracilis. Physiol Plant 115:276–283PubMedCrossRefGoogle Scholar
  112. Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671PubMedCrossRefGoogle Scholar
  113. Mendoza-Cózatl DG, Rangel-González E, Moreno-Sánchez R (2006a) Simultaneous Cd2+, Zn2+, and Pb2+ uptake and accumulation by photosynthetic Euglena gracilis. Arch Environ Contam Toxicol 51:521–528PubMedCrossRefGoogle Scholar
  114. Mendoza-Cózatl DG, Rodríguez-Zavala JS, Rodríguez-Enríquez S, Mendoza-Hernandez G, Briones-Gallardo R, Moreno-Sánchez R (2006b) Phytochelatin-cadmium-sulfide high-molecular-mass complexes of Euglena gracilis. FEBS J 273:5703–5713PubMedCrossRefGoogle Scholar
  115. Mendoza-Cózatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, Limbo O, Russell MR, Kozlovskyy VI, Martinoia E, Vatamaniuk OK, Russell P, Schroeder JI (2010) Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 285:40416–40426PubMedPubMedCentralCrossRefGoogle Scholar
  116. Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562PubMedPubMedCentralCrossRefGoogle Scholar
  117. Millard P, Evans LV (1982) Sulphate uptake in the unicellular marine red alga Rhodella maculata. Arch Microbiol 131:165–169CrossRefGoogle Scholar
  118. Miot J, Morin G, Skouri-Panet F, Férard C, Aubry E, Briand J, Wang Y, Ona-Nguema G, Guyot F, Brown GE (2008) XAS study of arsenic coordination in Euglena gracilis exposed to arsenite. Environ Sci Technol 42:5342–5347PubMedCrossRefGoogle Scholar
  119. Moreno-Sánchez R, Covián R, Jasso-Chávez R, Rodríguez-Enríquez S, Pacheco-Moisés F, Torres-Márquez ME (2000) Oxidative phosphorylation supported by an alternative respiratory pathway in mitochondria from Euglena. Biochim Biophys Acta 1457:200–210PubMedCrossRefGoogle Scholar
  120. Moreno-Sánchez R, Saavedra E, Gallardo-Pérez JC, Rumjanek FD, Rodríguez-Enríquez S (2016) Understanding the cancer cell phenotype beyond the limitations of current omics analyses. FEBS J 283:54–73PubMedCrossRefGoogle Scholar
  121. Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134PubMedCrossRefGoogle Scholar
  122. Nagalakshmi N, Prasad MN (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299PubMedCrossRefGoogle Scholar
  123. Nagata T, Ishikawa C, Kiyono M, Pan-Hou H (2006) Accumulation of mercury in transgenic tobacco expressing bacterial polyphosphate. Biol Pharm Bull 29:2350–2353PubMedCrossRefGoogle Scholar
  124. Nagata T, Kimura T, Pan-Hou H (2008) Engineering expression of polyphosphate confers cadmium resistance in tobacco. J Toxicol Sci 33:371–373PubMedCrossRefGoogle Scholar
  125. Nagel K, Adelmeier U, Voigt J (1996) Subcellular distribution of cadmium in the unicellular green alga Chlamydomonas reinhardtii. J Plant Physiol 149:86–90CrossRefGoogle Scholar
  126. Nakagawa CW, Mutoh N, Hayashi Y (1993) Glutathione synthetase from the fission yeast. Purification and its unique heteromeric subunit structure. Biochem Cell Biol 71:447–453PubMedCrossRefGoogle Scholar
  127. Nakano Y, Urade Y, Urade R, Kitaoka S (1987) Isolation, purification and characterization of the pellicle of Euglena gracilis z. J Biochem 102:1053–1063PubMedCrossRefGoogle Scholar
  128. Nam SH, Lee WN, Shin YJ, Yoon SJ, Kim SW, Kwak JI, An YJ (2014) Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems. Water Res 48:126–136PubMedCrossRefGoogle Scholar
  129. Nancucheo I, Johnson DB (2012) Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles. Front Microbiol 3:325PubMedPubMedCentralCrossRefGoogle Scholar
  130. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67:11021–11028PubMedCrossRefGoogle Scholar
  131. Nicolas P, Freyssinet G, Nigon V (1980) Effect of light on glucose utilization by Euglena gracilis. Plant Physiol 65:631–634PubMedPubMedCentralCrossRefGoogle Scholar
  132. Nishikawa K, Onodera A, Tominaga N (2006) Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp. Chemosphere 63:1553–1559PubMedCrossRefGoogle Scholar
  133. Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148PubMedPubMedCentralCrossRefGoogle Scholar
  134. O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA (2015) The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol Biosyst 11:2808–2820PubMedCrossRefGoogle Scholar
  135. Olaveson MM, Nalewajko C (2000) Effects of acidity on the growth of two Euglena species. Hydrobiologia 433:39–56CrossRefGoogle Scholar
  136. Olin-Sandoval V, González-Chávez Z, Berzunza-Cruz M, Martínez I, Jasso-Chávez R, Becker I, Espinoza B, Moreno-Sánchez R, Saavedra E (2012) Drug target validation of the trypanothione pathway enzymes through metabolic modelling. FEBS J 279:1811–1833PubMedCrossRefGoogle Scholar
  137. Orell A, Navarro CA, Rivero M, Aguilar JS, Jerez CA (2012) Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles 16:573–583PubMedCrossRefGoogle Scholar
  138. Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499PubMedPubMedCentralGoogle Scholar
  139. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728PubMedCrossRefGoogle Scholar
  140. Osaki Y, Shirabe T, Nakanishi H, Wakagi T, Yoshimura E (2009) Characterization of phytochelatin synthase produced by the primitive red alga Cyanidioschyzon merolae. Metallomics 1:353–358PubMedCrossRefGoogle Scholar
  141. Oven M, Page JE, Zenk MH, Kutchan TM (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase. J Biol Chem 277:4747–4754PubMedCrossRefGoogle Scholar
  142. Park H, Bakalinsky AT (2000) SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16:881–888PubMedCrossRefGoogle Scholar
  143. Patron NJ, Durnford DG, Kopriva S (2008) Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 8:39PubMedPubMedCentralCrossRefGoogle Scholar
  144. Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142PubMedCrossRefGoogle Scholar
  145. Pérez-Castiñeira JR, Gómez-García R, López-Marqués RL, Losada M, Serrano A (2001) Enzymatic systems of inorganic pyrophosphate bioenergetics in photosynthetic and heterotrophic protists: remnants or metabolic cornerstones? Int Microbiol 4:135–142PubMedGoogle Scholar
  146. Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB (2006) Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch Biochem Biophys 450:20–29PubMedCrossRefGoogle Scholar
  147. Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB (2008) The role of 5′-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, kinetic characterization, and gene expression. Phytochemistry 69:356–364PubMedCrossRefGoogle Scholar
  148. Prasanna R, Ratha SK, Rojas C, Bruns MA (2011) Algal diversity in flowing waters at an acidic mine drainage “barrens” in central Pennsylvania, USA. Folia Microbiol (Praha) 56:491–496CrossRefGoogle Scholar
  149. Preuss ML, Cameron JC, Berg RH, Jez JM (2014) Immunolocalization of glutathione biosynthesis enzymes in Arabidopsis thaliana. Plant Physiol Biochem 75:9–13PubMedCrossRefGoogle Scholar
  150. Proudfoot M, Kuznetsova E, Brown G, Rao NN, Kitagawa M, Mori H, Savchenko A, Yakunin AF (2004) General enzymatic screens identify three new nucleotidases in Escherichia coli. Biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem 279:54687–54694PubMedCrossRefGoogle Scholar
  151. Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118PubMedPubMedCentralCrossRefGoogle Scholar
  152. Ray D, Williams DL (2011) Characterization of the phytochelatin synthase of Schistosoma mansoni. PLoS Negl Trop Dis 5:e1168PubMedPubMedCentralCrossRefGoogle Scholar
  153. Richman PG, Meister A (1975) Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem 250:1422–1426PubMedGoogle Scholar
  154. Rigouin C, Nylin E, Cogswell AA, Schaumlöffel D, Dobritzsch D, Williams DL (2013) Towards an understanding of the function of the phytochelatin synthase of Schistosoma mansoni. PLoS Negl Trop Dis 7:e2037PubMedPubMedCentralCrossRefGoogle Scholar
  155. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56CrossRefGoogle Scholar
  156. Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, Rios de Molina Mdel C (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141:353–358PubMedCrossRefGoogle Scholar
  157. Rodríguez-Zavala JS, Ortiz-Cruz MA, Moreno-Sánchez R (2006) Characterization of an aldehyde dehydrogenase from Euglena gracilis. J Eukaryot Microbiol 53:36–42PubMedCrossRefGoogle Scholar
  158. Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of alpha-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172PubMedCrossRefGoogle Scholar
  159. Romero LC, Aroca MÁ, Laureano-Marin AM, Moreno I, Garcia I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7:264–276PubMedCrossRefGoogle Scholar
  160. Roncarati F, Sáez CA, Greco M, Gledhill M, Bitonti MB, Brown MT (2015) Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway. Aquat Toxicol 159:167–175PubMedCrossRefGoogle Scholar
  161. Ruelas-Inzunza J, Green-Ruiz C, Zavala-Nevárez M, Soto-Jiménez M (2011) Biomonitoring of Cd, Cr, Hg, and Pb in the Baluarte River basin associated to a mining area (NW Mexico). Sci Total Environ 409:3527–3536PubMedCrossRefGoogle Scholar
  162. Ruiz FA, Marchesini N, Seufferheld M, Govindjee, Docampo R (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276:46196–46203PubMedCrossRefGoogle Scholar
  163. Ruiz LB, Rocchetta I, Ferreira VDS, Conforti V (2004) Isolation, culture and characterization of a new strain of Euglena gracilis. Phycol Res 52:168–173CrossRefGoogle Scholar
  164. Saidha T, Stern AI, Lee DH, Schiff JA (1985) Localization of a sulphate-activating system within Euglena mitochondria. Biochem J 232:357–365PubMedPubMedCentralCrossRefGoogle Scholar
  165. Saidha T, Na SQ, Li JY, Schiff JA (1988) A sulphate metabolizing centre in Euglena mitochondria. Biochem J 253(2):533–539PubMedPubMedCentralCrossRefGoogle Scholar
  166. Sánchez-Thomas R, Moreno-Sánchez R, García-García JD (2016) Accumulation of zinc protects against cadmium stress in photosynthetic Euglena gracilis. Environ Exp Bot 131:19–31CrossRefGoogle Scholar
  167. Šantek B, Friehs K, Lotz M, Flaschel E (2012) Production of paramylon, a β-1,3-glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated-batch mode of cultivation. Eng Life Sci 12:89–94CrossRefGoogle Scholar
  168. Santiago-Martínez MG, Lira-Silva E, Encalada R, Pineda E, Gallardo-Pérez JC, Zepeda-Rodríguez A, Moreno-Sánchez R, Saavedra E, Jasso-Chávez R (2015) Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions. J Hazard Mater 288:104–112PubMedCrossRefGoogle Scholar
  169. Sarmiento AM, DelValls A, Miguel-Nieto J, Salamanca MJ, Caraballo MA (2011) Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Sci Total Environ 409:4763–4771PubMedCrossRefGoogle Scholar
  170. Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198PubMedCrossRefGoogle Scholar
  171. Schäfer HJ, Greiner S, Rausch T, Haag-Kerwer A (1997) In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for gamma-glutamylcysteine synthetase (gamma-ECS) and metallothionein (MT2). FEBS Lett 404:216–220PubMedCrossRefGoogle Scholar
  172. Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial gamma-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87–97PubMedCrossRefGoogle Scholar
  173. Schandle VB, Rudolph FB (1981) Isotope exchange at equilibrium studies with rat kidney gamma-glutamylcysteine synthetase. J Biol Chem 256:7590–7594PubMedGoogle Scholar
  174. Scheerer U, Haensch R, Mendel RR, Kopriva S, Rennenberg H, Herschbach C (2010) Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5′-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR. J Exp Bot 61:609–622PubMedCrossRefGoogle Scholar
  175. Schneider T, Betz A (1985) Wax monoester fermentation in Euglena gracilis T. Factors favouring the synthesis of odd-numbered fatty acids and alcohols. Planta 166:67–73PubMedCrossRefGoogle Scholar
  176. Sekine K, Sakakibara Y, Hase T, Sato N (2009) A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrate in the unicellular red alga Cyanidioschyzon merolae. Biochem J 423:91–98PubMedCrossRefGoogle Scholar
  177. Seufferheld M, Curzi MJ (2010) Recent discoveries on the roles of polyphosphates in plants. Plant Mol Biol Report 28:549–559CrossRefGoogle Scholar
  178. Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi SJ, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–296PubMedPubMedCentralCrossRefGoogle Scholar
  179. Shum KT, Lui EL, Wong SC, Yeung P, Sam L, Wang Y, Watt RM, Tanner JA (2011) Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry 50:3261–3271PubMedCrossRefGoogle Scholar
  180. Simpson WR (1981) A critical review of cadmium on marine environment. Prog Oceanogr 10:1–70CrossRefGoogle Scholar
  181. Sittenfeld A, Mora M, Ortega JM, Albertazzi F, Cordero A, Roncel M, Sánchez E, Vargas M, Fernández M, Weckesser J, Serrano A (2002) Characterization of a photosynthetic Euglena strain isolated from an acidic hot mud pool of a volcanic area of Costa Rica. FEMS Microbiol Ecol 42:151–161PubMedGoogle Scholar
  182. Sommer JR, Blum JJ (1965) Cytochemical localization of acid phosphatases in Euglena gracilis. J Cell Biol 24:235–251PubMedPubMedCentralCrossRefGoogle Scholar
  183. Sooksa-Nguan T, Yakubov B, Kozlovskyy VI, Barkume CM, Howe KJ, Thannhauser TW, Rutzke MA, Hart JJ, Kochian LV, Rea PA, Vatamaniuk OK (2009) Drosophila ABC transporter, DmHMT-1, confers tolerance to cadmium. DmHMT-1 and its yeast homolog, SpHMT-1, are not essential for vacuolar phytochelatin sequestration. J Biol Chem 284:354–362PubMedCrossRefGoogle Scholar
  184. Sun H, Han J, Li D, Zhang S, Lu X (2010) Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Sci Total Environ 408:4749–4760PubMedCrossRefGoogle Scholar
  185. Suter M, von Ballmoos P, Kopriva S, den Camp RO, Schaller J, Kuhlemeier C, Schurmann P, Brunold C (2000) Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes. J Biol Chem 275:930–936PubMedCrossRefGoogle Scholar
  186. Teerawanichpan P, Qiu X (2010) Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids 45:263–273PubMedCrossRefGoogle Scholar
  187. Trenfield MA, Ng JC, Noller B, Markich SJ, van Dam RA (2012) Dissolved organic carbon reduces uranium toxicity to the unicellular eukaryote Euglena gracilis. Ecotoxicology 21:1013–1023PubMedCrossRefGoogle Scholar
  188. Tsuji N, Hirayanagi N, Iwabe O, Namba T, Tagawa M, Miyamoto S, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2003) Regulation of phytochelatin synthesis by zinc and cadmium in marine green algae, Dunaliella tertiolecta. Phytochemistry 62:453–459PubMedCrossRefGoogle Scholar
  189. Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459PubMedCrossRefGoogle Scholar
  190. Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820PubMedCrossRefGoogle Scholar
  191. Vatamaniuk OK, Bucher EA, Sundaram MV, Rea PA (2005) CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 280:23684–23690PubMedCrossRefGoogle Scholar
  192. Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, den Camp RO, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740PubMedCrossRefGoogle Scholar
  193. Vázquez-Sauceda ML, Pérez-Castañeda R, Sánchez-Martínez JG, Aguirre-Guzmán G (2012) Cadmium and lead levels along the estuarine ecosystem of Tigre River-San Andres Lagoon, Tamaulipas, Mexico. Bull Environ Contam Toxicol 89:782–785CrossRefGoogle Scholar
  194. Venkata Mohan S, Rohit MV, Chirajeevi P, Chandra R, Navaneeth B (2015) Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresour Technol 184:169–178PubMedCrossRefGoogle Scholar
  195. Wang S, Wang Y, Zhang R, Wang W, Xu D, Gou J, Li P, Yu K (2015) Historical levels of the heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci Total Environ 532:645–654PubMedCrossRefGoogle Scholar
  196. Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241PubMedCrossRefGoogle Scholar
  197. Weber DN, Shaw CF, Petering DH (1987) Euglena gracilis cadmium-binding protein-II contains sulfide ion. J Biol Chem 262:6962–6964PubMedGoogle Scholar
  198. Wójcik M, Vangronsveld J, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens: I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ Exp Bot 53:151–161Google Scholar
  199. Wu JS, Ho TC, Chien HC, Wu YJ, Lin SM, Juang RH (2008) Characterization of the high molecular weight Cd-binding complex in water hyacinth (Eichhornia crassipes) when exposed to Cd. J Agric Food Chem 56:5806–5812PubMedCrossRefGoogle Scholar
  200. Yang JL, Zheng SL, He YF, Matsumoto H (2005) Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot 56:1197–1203PubMedCrossRefGoogle Scholar
  201. Yildiz FH, Davies JP, Grossman AR (1994) Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104:981–987PubMedPubMedCentralCrossRefGoogle Scholar
  202. Yip B, Rudolph FB (1976) The kinetic mechanism of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem 251:3563–3568PubMedGoogle Scholar
  203. Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K (2016) De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics 17:182PubMedPubMedCentralCrossRefGoogle Scholar
  204. Yoshimoto A, Sato R (1968) Studies on yeast sulfite reductase. I. Purification and characterization. Biochim Biophys Acta 153:555–575PubMedCrossRefGoogle Scholar
  205. Zheng C, Chen M, Tao Z, Zhang L, Zhang XF, Wang JY, Liu J (2015) Different expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd2+ stress: evidence from transcriptional, enzymatic, and metabolic profiles. Extremophiles 19:429–436PubMedCrossRefGoogle Scholar
  206. Zhu XF, Zheng C, Hu YT, Jiang T, Liu Y, Dong NY, Yang JL, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esculentum. Plant Cell Environ 34:1055–1064PubMedCrossRefGoogle Scholar
  207. Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K (2010) Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biol 10:78PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rafael Moreno-Sánchez
    • 1
    Email author
  • Sara Rodríguez-Enríquez
    • 1
  • Ricardo Jasso-Chávez
    • 1
  • Emma Saavedra
    • 1
  • Jorge D. García-García
    • 1
  1. 1.Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMéxico

Personalised recommendations