Biochemistry and Physiology of Vitamins in Euglena

  • Fumio WatanabeEmail author
  • Kazuya Yoshimura
  • Shigeru Shigeoka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 979)


Euglena gracilis Z requires vitamins B1 and B12 for growth. It takes up and accumulates large amounts of these exogenous vitamins through energy-dependent active transport systems. Except for these essential vitamins, E. gracilis Z has the ability to synthesize all human vitamins. Euglena synthesizes high levels of antioxidant vitamins such as vitamins C and E, and, thus, are used as nutritional supplements for humans and domestic animals. Methods to effectively produce vitamins in Euglena have been investigated.

Previous biochemical studies indicated that E. gracilis Z contains several vitamin-related novel synthetic enzymes and metabolic pathways which suggests that it is a highly suitable organism for elucidating the physiological functions of vitamins in comparative biochemistry and biological evolution. E. gracilis Z has an unusual biosynthetic pathway for vitamin C, a hybrid of the pathways found in animals and plants. This chapter presents up-to-date information on the biochemistry and physiological functions of vitamins in this organism.


Biosynthetic pathway Essential nutrients Euglena gracilisFat-soluble vitamins Nutritional supplements Water-soluble vitamins 



Acyl-carrier protein






L-ascorbic acid


Vitamin B12


Cyclic ADP-ribose


Cyclic AMP




co-enzyme A












Intrinsic factor












Methylmalonyl-CoA mutase






Methionine synthase


Methylmalonic aciduria type A protein




Nicotinic acid adenine dinucleotide phosphate


NAD+ kinase


















Ribonucleotide reductase


Serine hydroxymethyltransferase


Transcobalamin II


Thiamine diphosphate


Thiamine monophosphate


Thiamine triphosphate


  1. Afiukwa CA, Ogbonna JC (2007) Effects of mixed substrates on growth and vitamin production by Euglena gracilis. African J Biotechnol 6:2612–2615CrossRefGoogle Scholar
  2. Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181PubMedCrossRefGoogle Scholar
  3. Ahn IP, Kim S, Lee YH (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138:1505–1515PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anding C, Ourisson G (1973) Presence of ergosterol in light-grown and dark-grown Euglena gracilis Z. Eur J Biochem 34:345–346PubMedCrossRefGoogle Scholar
  5. Atkinson JP, Weiss A, Ito M, Kelly J, Parker CW (1979) Effects of ascorbic acid and sodium ascorbate on cyclic nucleotide metabolism in human lymphocytes. J Cyclic Nucleotide Res 5:107–123PubMedGoogle Scholar
  6. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167PubMedCrossRefGoogle Scholar
  7. Baker RB, McLaughlin JJA, Hutner SH, DeAngelis B, Feingold S, Frank O, Baker H (1981) Water-soluble vitamins in cells and spent culture supernatants of Poteriochromonas stipitata, Euglena gracilis, and Tetrahymena thermophila. Arch Microbiol 129:310–313CrossRefGoogle Scholar
  8. Banerjee RV, Matthews RG (1990) Cobalamin-dependent methionine synthase. FASEB J 4:1450–1459PubMedGoogle Scholar
  9. Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344PubMedPubMedCentralCrossRefGoogle Scholar
  10. Basset GJC, Quinlivan EP, Gregory JF III, Hanson AD (2005) Folate synthesis and metabolism in plants and prospects For biofortification. Crop Sci 45:449–453CrossRefGoogle Scholar
  11. Begley TP, Downs DM, Ealick SE, McLafferty FW, Van Loon AP, Taylor S, Campobasso N, Chiu HJ, Kinsland C, Reddick JJ, Xi J (1999) Thiamin biosynthesis in prokaryotes. Arch Microbiol 171:293–300PubMedCrossRefGoogle Scholar
  12. Begley TP, Ealick SE, McLafferty FW (2012) Thiamin Biosynthesis - still yielding fascinating biological chemistry. Biochem Soc Trans 40:555–560PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berrin JG, Pierrugues O, Brutesco C, Alonso B, Montillet JL, Roby D, Kazmaier M (2005) Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol Gen Genomics 273:10–19CrossRefGoogle Scholar
  14. Bradbeer C (1971) Transport of vitamin B12 in Ochromonas malhamensis. Arch Biochem Biophys 144:184–192PubMedCrossRefGoogle Scholar
  15. Bradbeer C, Woodrow ML (1976) Transport of vitamin B12 in Escherichia coli: energy-dependence. J Bacteriol 128:99–104PubMedPubMedCentralGoogle Scholar
  16. Brandt RD, Pryce RJ, Anding C, Ourisson G (1970) Sterol biosynthesis in Euglena gracilis Z. Comparative study of free and bound sterols in light and dark grown Euglena gracilis Z. Eur J Biochem 17:344–349PubMedCrossRefGoogle Scholar
  17. Bre MH, Diamond J, Jacques R (1975) Factors mediating the vitamin B12 requirement of Euglena. J Protozool 22:432–434CrossRefGoogle Scholar
  18. Brown GM (1962) The biosynthesis of folic acid II. Inhibition by sulfonamides. J Biol Chem 237:536–540PubMedGoogle Scholar
  19. Carballo-Cardenas EC, Tuan PM, Janssen M, Wijffels RH (2003) Vitamin E (α-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomolecular Eng 20:139–147CrossRefGoogle Scholar
  20. Carell EF (1969) Studies on chloroplast development and replication in Euglena. I. Vitamin B12 and chloroplast replication. J Cell Biol 41:431–440PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carell EF, Seeger JW Jr (1980) Ribonucleotide reductase activity in vitamin B12-deficient Euglena gracilis. Biochem J 188:573–576PubMedPubMedCentralCrossRefGoogle Scholar
  22. Carell EF, Johnston PL, Christopher AR (1970) Vitamin B12 and the macromolecular composition of Euglena. J Cell Biol 47:525–530PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carré IA, Edmunds LN Jr (1992) Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. J Cell Sci 104:1163–1173Google Scholar
  24. Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC (2005) NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol 59:553–564PubMedCrossRefGoogle Scholar
  25. Chai MF, Wei PC, Chen QJ, An R, Chen J, Yang S, Wang XC (2006) NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J 47:665–674PubMedCrossRefGoogle Scholar
  26. Choi JH, Yates Z, Veysey M, Heo YR, Lucock M (2014) Contemporary Issues Surrounding Folic Acid Fortification Initiatives. Prev Nutr Food Sci 19:247–260PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cook JR (1968) The cultivation and growth of Euglena. In: Buetow DE (ed) The biology of Euglena, vol 1. Academic Press, New York, pp 243–314Google Scholar
  28. Cramer M, Myers J (1952) Growth and photosynthetic characteristics of Euglena gracilis. Arch Microbiol 17:384–402Google Scholar
  29. Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183PubMedPubMedCentralCrossRefGoogle Scholar
  30. Crosti P, Bianchetti R (1983) Identification and cell level of folate derivatives from growing cultures of streptomycin-bleached Euglena gracilis. Plant Sci Lett 31:205–214CrossRefGoogle Scholar
  31. Crosti P, Lorusso V, Bianchetti R (1984) Folate cell content and distribution during the culture cycle of Euglena gracilis. Plant Sci Lett 34:363–368CrossRefGoogle Scholar
  32. Crosti P, Gambini A, Bianchetti R (1987) Repression of folate synthesis in the logarithmic phase of Euglena gracilis growth. Plant Sci 50:91–86Google Scholar
  33. Delo J, Ernst-Fonberg ML, Bloch K (1971) Fatty acid synthases from Euglena gracilis. Arch Biochem Biophys 143:384–391PubMedCrossRefGoogle Scholar
  34. Di Nello RK, Ernst-Fonberg ML (1973) Purification and partial characterization of an acyl carrier protein from Euglena gracilis. J Biol Chem 248:1707–1711Google Scholar
  35. Dolphin WD (1970) Photoinduced carotenogenesis in chlorotic Euglena gracilis. Plant Physiol 46:685–691PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dörmann P (2007) Functional diversity of tocochromanols in plants. Planta 225:269–276PubMedCrossRefGoogle Scholar
  37. Evers A, Ernst-Fongerg ML (1974) Differential responses of two carboxylases from Euglena to the state of chloroplast development. FEBS Lett 46:234–235CrossRefGoogle Scholar
  38. Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566PubMedCrossRefGoogle Scholar
  39. Fenton WA, Ambani LM, Rosenberg LE (1976) Uptake of hydroxocobalamin by rat liver mitochondria. Binding to a mitochondrial protein. J Biol Chem 251:6616–6623PubMedGoogle Scholar
  40. Fenton WA, Hack AM, Willard HF, Gertler A, Rosenberg LE (1982) Purification and properties of methylmalonyl coenzyme a mutase from human liver. Arch Biochem Biophys 214:815–826PubMedCrossRefGoogle Scholar
  41. Fischer M, Schott AK, Römisch W, Ramsperger A, Augustin M, Fidler A, Bacher A, Richter G, Huber R, Eisenreich W (2004) Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. J Mol Biol 343:267–278PubMedCrossRefGoogle Scholar
  42. Fischer M, Haase I, Feicht R, Schramek N, Köhler P, Schieberle P, Bacher A (2005) Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin. Biol Chem 386:417–428PubMedCrossRefGoogle Scholar
  43. Frenkel EP, Mukherjee A, Hackenbrock CR, Srere PA (1976) Biochemical and ultrastructural hepatic changes during vitamin B12 deficiency in animals and man. J Biol Chem 251:2147–2154PubMedGoogle Scholar
  44. Fujita T, Aoyagi H, Ogbonna JC, Tanaka H (2008) Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl Microbiol Biotechnol 79:371–378PubMedCrossRefGoogle Scholar
  45. Gerster H (1997) Vitamin A-functions, dietary requirements and safety in humans. Int J Vit Nutr Res 67:71–90Google Scholar
  46. Giancaspero TA, Locato V, de Pinto MC, De Gara L, Barile M (2009) The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS J 276:219–231PubMedCrossRefGoogle Scholar
  47. Gleason FK, Hogenkamp HPC (1970) Ribonucleotide reductase from Euglena gracilis, a deoxyadenosylcobalamin-dependent enzyme. J Biol Chem 245:4894–4899PubMedGoogle Scholar
  48. Goldberg I, Bloch K (1972) Fatty acid synthetases in Euglena gracilis. J Biol Chem 247:7349–7357PubMedGoogle Scholar
  49. Goyer A (2010) Thiamine in plants: Aspects of its metabolism and functions. Phytochemistry 71:1615–1624PubMedCrossRefGoogle Scholar
  50. Grimm P, Risse JM, Cholewa D, Müller JM, Beshay U, Friehs K, Flaschel E (2015) Applicability of Euglena gracilis for biorefineries demonstrated by theproduction of α-tocopherol and paramylon followed by anaerobicdigestion. J Biotechnol 215:72–79PubMedCrossRefGoogle Scholar
  51. Grün M, Loewus FA (1984) L-Ascorbic-acid biosynthesis in the euryhaline diatom Cyclotella cryptica. Planta 160:6–11PubMedCrossRefGoogle Scholar
  52. Haase I, Gräwert T, Illarionov B, Bacher A, Fisher M (2014) Recent advantage in riboflavin biosynthesis. Methods Mol Biol 1146:15–40PubMedCrossRefGoogle Scholar
  53. Hamilton FD (1974) Ribonucleotide reductase from Euglena gracilis. A 5′-deoxyadenosylcobalamin-dependent enzyme. J Biol Chem 249:4428–4434PubMedGoogle Scholar
  54. Han YS, Bratt JM, Hogenkamp HPC (1984) Purification and characterization of methylmalonyl-CoA mutase from Ascaris lumbricodes. Comp Biochem Physiol 78B:41–45Google Scholar
  55. Hashida S, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress responses. Ann Bot 103:819–824PubMedPubMedCentralCrossRefGoogle Scholar
  56. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933PubMedCrossRefGoogle Scholar
  57. Hellmann H, Mooney S (2010) Vitamin B6: A Molecule for Human Health? Molecules 15:442–459PubMedCrossRefGoogle Scholar
  58. Helsper JP, Kagan L, Hilby CL, Maynard TM, Loewus FA (1982) L-Ascorbic acid biosynthesis in Ochromonas danica. Plant Physiol 69:465–468PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hiratsuka T, Furihata K, Ishikawa J, Yamashita H, Itoh N, Seto H, Dairi T (2008) An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321:1670–1673PubMedCrossRefGoogle Scholar
  60. Hosotani K, Kitaoka S (1984) Determination of provitamin A in Euglena gracilis Z by high performance liquid chromatography and changes of the contents under various culture conditions. J Jpn Soc Nutr Food Sci 37:519–524CrossRefGoogle Scholar
  61. Iacopetta D, Carrisi C, De Filippis G, Calcagnile VM, Cappello AR, Chimento A, Curcio R, Santoro A, Vozza A, Dolce V, Palmieri F, Capobianco L (2010) The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster. FEBS J 277:1172–1181PubMedCrossRefGoogle Scholar
  62. Inui H, Miyatake K, Nakano Y, Kitaoka S (1984) Fatty acid synthesis in mitochondria of Euglena gracilis. Eur J Biochem 142:121–126PubMedCrossRefGoogle Scholar
  63. Inui H, Miyatake K, Nakano Y (1986) Kitaoka S (1986) Purification and some properties of short chain-length specific trans-2-enoyl-CoA reductase in mitochondria of Euglena gracilis. J Biochem 100:995–1000PubMedCrossRefGoogle Scholar
  64. Inui H, Ono K, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate:NADP+ oxidoreductase in Euglena gracilis. J Biol Chem 262:9130–9135PubMedGoogle Scholar
  65. Inui H, Yamaji R, Saidoh H, Miyatake K, Nakano Y, Kitaoka S (1991) Pyruvate:NADP+ oxidoreductase from Euglena gracilis: limited proteolysis of the enzyme with trypsin. Arch Biochem Biophys 286:270–276PubMedCrossRefGoogle Scholar
  66. Inui H, Ohya O, Isegawa Y, Kitaoka S, Miyatake K, Nakano Y (1996) Effect of cobalamin deficiency on the biosynthesis of phosphatidylcholine in Euglena gracilis. J Euk Microbiol 43:177–180CrossRefGoogle Scholar
  67. Isegawa Y, Nakano Y, Kitaoka S (1984) Conversion and distribution of cobalamin in Euglena gracilis Z, with special reference to its location and probable function within chloroplasts. Plant Physiol 76:814–818PubMedPubMedCentralCrossRefGoogle Scholar
  68. Isegawa Y, Nakano Y, Kitaoka S (1987) Photosynthesis of Euglena gracilis under cobalamin-sufficient and -limited growing conditions. Plant Physiol 84:609–612PubMedPubMedCentralCrossRefGoogle Scholar
  69. Isegawa Y, Watanabe F, Kitaoka S, Nakano Y (1994) Subcellular distribution of cobalamin-dependent methionine synthase in Euglena gracilis Z. Phytochemistry 35:59–61CrossRefGoogle Scholar
  70. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051PubMedCrossRefGoogle Scholar
  71. Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154PubMedCrossRefGoogle Scholar
  72. Ishikawa T, Masumoto I, Iwasa N, Nishikawa H, Sawa Y, Shibata H, Nakamura A, Yabuta Y, Shigeoka S (2006) Functional characterization of D-galacturonic acid reductase, a key enzyme of the ascorbate biosynthesis pathway, from Euglena gracilis. Biosci Biotechnol Biochem 70:2720–2726PubMedCrossRefGoogle Scholar
  73. Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T, Shigeoka S (2008) The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase. J Biol Chem 283:31133–31141PubMedPubMedCentralCrossRefGoogle Scholar
  74. Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67:71–98PubMedCrossRefGoogle Scholar
  75. Julliard JH, Douce R (1991) Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher plant chloroplasts. Proc Natl Acad Sci U S A 88:2042–2045PubMedPubMedCentralCrossRefGoogle Scholar
  76. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond Ser B Biol Sci 365:729–748CrossRefGoogle Scholar
  77. Kenley JS, Leighton M, Bradbeer C (1978) Transport of vitamin B12 in Escherichia coli. Corrinoid specificity of the outer membrane receptor. J Biol Chem 253:1341–1346PubMedGoogle Scholar
  78. Kitaoka S, Nakano Y, Miyatake K, Yokota A (1989) Enzymes and their functional location. In: Buetow DE (ed) Biology of Euglena, vol 4. Academic Press, New York, pp 1–135Google Scholar
  79. Kiyota M, Numayama N, Goto K (2006) Circadian rhythms of the L-ascorbic acid level in Euglena and spinach. J Photochem Photobiol B 84:197–203PubMedCrossRefGoogle Scholar
  80. Kolhouse JF, Allen RH (1977) Absorption, plasma transport, and cellular retention of cobalamin analogues in the rabbit. Evidence for the existence of multiple mechanisms that prevent the absorption and tissue dissemination of naturally occurring cobalamin analogues. J Clin Invest 60:1381–1392PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kinsky NI, Goldsmith TH (1960) The carotenoids of the flagellated alga, Euglena gracilis. Arch Biochem Biophys 91:271–279Google Scholar
  82. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97:13172–13177PubMedPubMedCentralCrossRefGoogle Scholar
  83. Laval-Martin DL, Carré IA, Barbera SJ, Edmunds LN Jr (1990a) Circadian variations in the affinities of NAD kinase and NADP phosphatase for their substrates, NAD+ and NADP+, in dividing and nondividing cells of the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z). Chronobiol Int 7:99–105PubMedCrossRefGoogle Scholar
  84. Laval-Martin DL, Carré IA, Barbera SJ, Edmunds LN Jr (1990b) Rhythmic changes in the activities of NAD kinase and NADP phosphatase in the Achlorophyllous ZC mutant of Euglena gracilis Klebs (Strain Z). Arch Biochem Biophys 276:433–441PubMedCrossRefGoogle Scholar
  85. Lawrence CC, Stubbe J (1998) The function of adenosylcobalamin in the mechanism of ribonucleotide triphosphate reductase from Lactobacillus leichimannii. Curr Opin Chem Biol 2:650–655PubMedCrossRefGoogle Scholar
  86. Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R, Gravel RA (1996) Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Human Mol Genet 5:1867–1874CrossRefGoogle Scholar
  87. Lee HC (2001) Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol 41:317–345PubMedCrossRefGoogle Scholar
  88. Leedale GF, Messue BJD, Pringsheim EG (1965) Structure and physiology of Euglena spirogyra. Arch Mikrobiol 50:133–155PubMedCrossRefGoogle Scholar
  89. Lefort-Tran M, Bre MH, Pouphile M, Manigault P (1987) DNA flow cytometery of control Euglena and cell cycle blockage of vitamin B12-starved cells. Cytometry 8:46–54PubMedCrossRefGoogle Scholar
  90. Lindhurst MJ, Fiermonte G, Song S, Struys E, De Leonardis F, Schwartzberg PL, Chen A, Castegna A, Verhoeven N, Mathews CK, Palmieri F, Biesecker LG (2006) Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc Natl Acad Sci U S A 103:15927–15932PubMedPubMedCentralCrossRefGoogle Scholar
  91. Londesborough JC, Webster Jr LT (1974) Fatty acyl-CoA syntetases. In The enzymes (Boyer PD), vol. 10, Academic Press, New York, pp. 469–488.Google Scholar
  92. Mabey T, Honsawek S (2015) Role of vitamin D in osteoarthritis: molecular, cellular, and clinical perspectives. Int J Endocrinol 3839Google Scholar
  93. Margueritta S, El Asmar MS, Naoum JN, Arbid EJ (2014) Vitamin K dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: A review. Oman Med J 29:172–177Google Scholar
  94. Marobbio CM, Vozza A, Harding M, Bisaccia F, Palmieri F, Walker JE (2002) Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J 21:5653–5661PubMedPubMedCentralCrossRefGoogle Scholar
  95. Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K, Shigeoka S (2012) An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. Plant Cell Physiol 53:1106–1116PubMedCrossRefGoogle Scholar
  96. Maruyama J, Yamaoka S, Matsuo I, Tsutsumi N, Kitamoto K (2012) A newly discovered function of peroxisomes: involvement in biotin biosynthesis. Plant Signal Behav 7: 1589–1593Google Scholar
  97. Masuda T, Yoshino M, Nishizaki I, Tai A, Osaki H (1980) Purification and properties of allothreonine aldolase from maise seedlings. Agric Biol Chem 44:2199–2201Google Scholar
  98. Masuda T, Sakamoto M, Nishizaki I, Hayashi H, Yamamoto M, Wada H (1987) Affinity purification and characterization of serine hydroxymethyltransferase from rat liver. J Biochem 101:643–652PubMedCrossRefGoogle Scholar
  99. Masuda W, Takenaka S, Inageda K, Nishina H, Takahashi K, Katada T, Tsuyama S, Inui H, Miyatake K, Nakano Y (1997a) Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis. FEBS Lett 405:104–106PubMedCrossRefGoogle Scholar
  100. Masuda W, Takenaka S, Tsuyama S, Tokunaga M, Yamaji R, Inui H, Miyatake K, Nakano Y (1997b) Inositol 1,4,5-trisphosphate and cyclic ADP-ribose mobilize Ca2+ in a protest, Euglena gracilis. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 118:279–283PubMedCrossRefGoogle Scholar
  101. Masuda W, Takenaka S, Tsuyama S, Inui H, Miyatake K, Nakano Y (1999) Purification and characterization of ADP-ribosul cyclase from Euglena gralisis. J Biochem 125:449–453PubMedCrossRefGoogle Scholar
  102. McGuire JJ, Bertino JR (1981) Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem 38:19–48PubMedCrossRefGoogle Scholar
  103. Miyamoto E, Watanabe F, Yamaguchi Y, Takenaka H, Nakano Y (2004) Purification and characterization of methyl malonyl-CoA mutase from a photosynthetic coccolithophorid alga, Pleurochrysis carterae. Comp Biochem Physiol B 138:163–167PubMedCrossRefGoogle Scholar
  104. Miyamoto E, Tanioka Y, Yukino Y, Hayashi M, Watanabe F, Nakano Y (2007) Occurrence of 5′-deoxyadenosylcobalamin and its physiological function as the coenzyme of methyl malonyl-CoA mutase in a marine eukaryotic microorganism, Schizochytrium limacinum SR21. J Nutr Sci Vitaminol 53:471–475PubMedCrossRefGoogle Scholar
  105. Miyamoto E, Tanioka Y, Nishizawa-Yokoi A, Yabuta Y, Ohnishi K, Misono H, Shigeoka S, Nakano Y, Watanabe F (2010) Characterization of methylmalonyl-CoA mutase involved in the propionate photoassimilation of Euglena gracilis Z. Arch Microbiol 192:437–446PubMedCrossRefGoogle Scholar
  106. Nakazawa M, Inui H, Yamaji R, Yamamoto T, Takenaka S, Ueda M, Nakano Y, Miyatake K (2000) The origin of pyruvate:NADP+ oxidoreductase in mitochondria of Euglena gracilis. FEBS Lett 479:155–157PubMedCrossRefGoogle Scholar
  107. Nakazawa M, Takenaka S, Ueda M, Inui H, Nakano Y, Miyatake K (2003) Pyruvate:NADP+ oxidoreductase is stabilized by its cofactor, thiamin pyrophosphate, in mitochondria of Euglena gracilis. Arch Biochem Biophys 411:183–188PubMedCrossRefGoogle Scholar
  108. Nishikimi M, Yagi K (1996) Biochemistry and molecular biology of ascorbic acid biosynthesis. Subcell Biochem 25:17–39PubMedCrossRefGoogle Scholar
  109. Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620PubMedCrossRefGoogle Scholar
  110. Nosaka K (2006) Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 72:30–40PubMedCrossRefGoogle Scholar
  111. Nowicka B, Kruk J (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797:1587–1605PubMedCrossRefGoogle Scholar
  112. Ochi H, Shigeoka S, Watanabe F, Nakano Y, Kitaoka S (1988a) Changes of vitamin B2 and B6 contents during growth of Euglena gracilis. Vitamins (Japan) 62:515–518Google Scholar
  113. Ochi H, Watanabe F, Shigeoka S, Nakano Y, Kitaoka S (1988b) Water-soluble vitamin contents of Euglena gracilis Z. J Jpn Soc Nutr Food Sci 41:495–500Google Scholar
  114. Ogbonna JC (2009) Microbiological production of tocopherols: current state and prospects. Appl Microbiol Biotechnol 84:217–225PubMedCrossRefGoogle Scholar
  115. Ogbonna JC, Tomiyama S, Tanaka H (1999) Production of α-tocopherol by sequential heterotrophic–photoautotrophic cultivation of Euglena gracilis. J Biotechnol 70:213–221CrossRefGoogle Scholar
  116. Pollak N, Niere M, Ziegler M (2007) NAD kinase levels control the NADPH concentration in human cells. J Biol Chem 282:33562–33571PubMedCrossRefGoogle Scholar
  117. Pou de Crescenzo MA, Goto K, Carré IA, Laval-Martin DL (1997) Regulation of a NAD+ kinase activity isolated from asynchronous cultures of the achlorophyllous ZC mutant of Euglena gracilis. Z Naturforsch C 52:623–635PubMedGoogle Scholar
  118. Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59:4133–4143PubMedCrossRefGoogle Scholar
  119. Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95:7805–7812PubMedCentralCrossRefPubMedGoogle Scholar
  120. Rawat R, Sandoval FJ, Wei Z, Winkler R, Roje S (2011) An FMN hydrolase of the haloacid dehalogenase superfamily is active in plant chloroplasts. J Biol Chem 286:42091–42098PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rebou E (2013) Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients 5:3563–3581CrossRefGoogle Scholar
  122. Reichard P (1993) The anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem 268:8383–8386PubMedGoogle Scholar
  123. Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126:129–142PubMedCrossRefGoogle Scholar
  124. Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172PubMedCrossRefGoogle Scholar
  125. Roje S (2007) Vitamin B biosynthesis in plants. Phytochemistry 68:1904–1921PubMedCrossRefGoogle Scholar
  126. Ross GIM (1952) Vitamin B12 assay in body fluids using Euglena gracilis. J Clin Pathol 5:250–256PubMedPubMedCentralCrossRefGoogle Scholar
  127. Ruggeri BA, Gray RJH, Watkins TR, Tomlins RI (1985) Effect of low-temperature acclimation and oxygen stress on tocopherol production in Euglena gracilis Z. Appl Environ Microbiol 50:1404–1408PubMedPubMedCentralGoogle Scholar
  128. Running JA, Severson DK, Schneider KJ (2002) Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. J Ind Microbiol Biotechnol 29:93–98PubMedCrossRefGoogle Scholar
  129. Running JA, Burlingame RP, Berry A (2003) The pathway of L-ascorbic acid biosynthesis in the colourless microalga Prototheca moriformis. J Exp Bot 54:1841–1849PubMedCrossRefGoogle Scholar
  130. Saint-Macary ME, Barbisan C, Gagey MJ, Frelin O, Beffa R, Lebrun MH, Droux M (2015) Methionine biosynthesis is essential for infection in the rice blast fungus Magnaporthe oryzae. PLos One: pone.0111108.Google Scholar
  131. Sakamoto M, Masuda T, Yanagimoto Y, Nakano Y, Kitaoka S (1991) Purification and characterization of cytosolic serine hydroxylmethyltransferase from Euglena gracilis Z. Agric Biol Chem 55:2243–2249Google Scholar
  132. Sakamoto M, Masuda T, Yanagimoto Y, Nakano Y, Kitaoka S, Tanigawa Y (1996) Purification and characterization of serine hydroxylmethyltransferase from mitochondria of Euglena gracilis Z. Biosci Biotechnol Biolchem 60:1941–1944CrossRefGoogle Scholar
  133. Sandoval FJ, Roje S (2005) An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J Biol Chem 280:38337–38345PubMedCrossRefGoogle Scholar
  134. Sandoval FJ, Zhang Y, Roje S (2008) Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids. J Biol Chem 283:30890–30900PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sang Y, Barbosa JM, Wu H, Locy RD, Singh NK (2007) Identification of a pyridoxine (pyridoxamine) 5'-phosphate oxidase from Arabidopsis thaliana. FEBS Lett 581:344–348PubMedCrossRefGoogle Scholar
  136. Sarhan F, Houde M, Cheneval JP (1980) The role of vitamin B12 binding in the uptake of the vitamin by Euglena gracilis. J Protozool 27:235–238CrossRefGoogle Scholar
  137. Sayed SA, Gadallah MAA (2002) Effects of shoot and root application of thiamin on salt-stressed sunflower plants. Plant Growth Regul 36:71–80CrossRefGoogle Scholar
  138. Seeger JW, Bentley R (1991) Phylloquinone (vitamin K1) biosynthesis in Euglena gracilis strain Z. Pytochemistry 30:3585–3589CrossRefGoogle Scholar
  139. Seeger JW Jr, Carell EF (1991) Respiration of Euglena gracilis grown under conditions of vitamin B12-sufficiency,—deficiency, and -replenishment. Plant Sci 79:143–148CrossRefGoogle Scholar
  140. Shane B (2011) Folate status assessment history: implications for measurement of biomarkers in NHANES. Am J Clin Nutr 94:337S–342SPubMedPubMedCentralCrossRefGoogle Scholar
  141. Shehata TE, Kempner ES (1979) Synchronization of division in vitamin B12-starved Euglena gracilis. J Protozool 26:626–630PubMedCrossRefGoogle Scholar
  142. Shigeoka S, Nakano Y (1991) Characterization and molecular properties of 2-oxoglutarate decarboxylase from Euglena gracilis. Arch Biochem Biophys 288:22–28PubMedCrossRefGoogle Scholar
  143. Shigeoka S, Nakano Y (1993) The effect of thiamin on the activation of thiamin pyrophosphate-dependent 2-oxoglutarate decarboxylase in Euglena gracilis. Biochem J 292:463–467PubMedPubMedCentralCrossRefGoogle Scholar
  144. Shigeoka S, Yokota A, Nakano Y, Kitaoka S (1979a) The effect of illumination on the L-ascorbic acid content in Euglena gracilis z. Agric Biol Chem 43: 2053–2058Google Scholar
  145. Shigeoka S, Nakano Y, Kitaoka S (1979b) The biosynthetic pathway of L-ascorbic acid in Euglena gracilis z. J Nutr Sci Vitaminol 25: 299–307Google Scholar
  146. Shigeoka S, Nakano Y, Kitaoka S (1979c) Some properties and subcellular localization of L-gulono-γ-lactone dehydrogenase in Euglena gracilis z. Agric Biol Chem 43: 2187–2188Google Scholar
  147. Shigeoka S, Nakano Y, Kitaoka S (1980) Occurrence of L-ascorbic acid in Euglena gracilis Z. Bull Univ Osaka Pref ser B 32:43–48Google Scholar
  148. Shigeoka S, Onishi T, Maeda K, Nakano Y, Kitaoka S (1986a) Occurrence of thiamine pyrophosphate-dependent 2-oxoglutarate dehydrogenase in mitochondria of Euglena gracilis. FEBS Lett 195:43–47CrossRefGoogle Scholar
  149. Shigeoka S, Onishi T, Nakano Y, Kitaoka S (1986b) The contents and subcellular distribution of tocopherols in Euglena gracilis. Agric Biol Chem 50:1063–1065Google Scholar
  150. Shigeoka S, Onishi T, Nakano Y, Kitaoka S (1987a) Requirement for Vitamin B1 for growth of Euglena gracilis. J Gen Microbiol 133:25–30Google Scholar
  151. Shigeoka S, Onishi T, Kishi N, Maeda K, Ochi H, Nakano Y, Kitaoka S (1987b) Occurrence and subcellular distribution of thiamine pyrophosphokinase isozyme in Euglena gracilis. Agric Biol Chem 51:2811–2813Google Scholar
  152. Shigeoka S, Onishi T, Maeda K, Nakano Y, Kitaoka S (1987c) Thiamin uptake in Euglena gracilis. Biochim Biophys Acta 929:247–252PubMedCrossRefGoogle Scholar
  153. Shigeoka S, Yasumoto R, Onishi T, Nakano Y, Kitaoka S (1987d) Properties of monodehydroascorbate reductase and dehydroascorbate reductase and their participation in the regeneration of ascorbate in Euglena gracilis. J Gen Microbiol 133:227–232Google Scholar
  154. Shigeoka S, Ishiko H, Nakano Y, Mitsunaga T (1992) Isolation and properties of γ-tocopherol methyltransferase in Euglena gracilis. Biochim Biophys Acta 1128:220–226PubMedCrossRefGoogle Scholar
  155. Simoni RD, Criddle RS, Stumpf PK (1967) Fat metabolism in higher plants XXXI. Purification and properties of plant and bacterial acyl carrier proteins. J Biol Chem 242:573–581PubMedGoogle Scholar
  156. Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235PubMedCrossRefGoogle Scholar
  157. Smirnoff N (2001) L-ascorbic acid biosynthesis. Vitam Horm 61:241–266PubMedCrossRefGoogle Scholar
  158. Spano AJ, Schiff JA (1987) Purification, properties, and cellular localization of Euglena ferredoxin-NADP reductase. Biochim Biophys Acta 894:484–498PubMedCrossRefGoogle Scholar
  159. Stephan C, Renard M, Montrichard F (2000) Evidence for the existence of two soluble NAD+ kinase isoenzymes in Euglena gracilis Z. Int J Biochem Cell Biol 32:855–863PubMedCrossRefGoogle Scholar
  160. Stern AI, Schiff JA, Klein HP (1960) Isolation of Ergosterol from Euglena gracilis; Distribution Among Mutant Strains. J Protozool 7:52–55CrossRefGoogle Scholar
  161. Stubbe J (2003) Di-iron-tyrosyl radical ribonucleotide reductases. Curr Opin Chem Biol 7:183–188PubMedCrossRefGoogle Scholar
  162. Stupperich E, Nexo E (1991) Effect of the cobalt-N coordination on the cobamide recognition by the human vitamin B12 binding proteins intrinsic factor, transcobalanin and haptocorrin. Eur J Biochem 199:299–303PubMedCrossRefGoogle Scholar
  163. Takahashi-Iniguez T, Garcia-Arellano H, Trujillo-Roldan MA, Flores ME (2011) Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biochem Biophys Res Commun 2011(404):443–447CrossRefGoogle Scholar
  164. Takaichi S (2011) Carotenoids in algae: Distributions, biosyntheses and functions. Mar Drugs 9:1101–1118PubMedPubMedCentralCrossRefGoogle Scholar
  165. Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T (1997) Production of antioxidant vitamins, beta-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 53:185–190PubMedCrossRefGoogle Scholar
  166. Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53:305–312Google Scholar
  167. Thomas G, Threlfall DR (1975) Synthesis of 3-polyprenyltoluquinols and 4-carboxy-2-polyprenylphenols by cell-free preparations of Euglena gracilis. Phytochemistry 14:2607–2615CrossRefGoogle Scholar
  168. Threlfall DR, Goodwin TW (1967) Nature, intracellular distribution and formation of terpenoid quinines in Euglena gracilis. Biochem J 103:573–588PubMedPubMedCentralCrossRefGoogle Scholar
  169. Tokunaga M, Nakano Y, Kitaoka S (1976) Preparation of physiological intact mitochondria from Euglena gracilis Z. Agric Biol Chem 40:1439–1440Google Scholar
  170. Torrents E, Trevisiol C, Rotte C, Hellman U, Martin W, Reichard P (2006) Euglena gracilis ribonucleotide reductase. The eukaryote class II enzyme and the possible antiquity of eukaryote B12 dependence. J Biol Chem 281:5604–5611PubMedCrossRefGoogle Scholar
  171. Tripkovic L, Lambert H, Hart K, Smith CP, Bucca G, Penson S, Chope G, Hypponen E, Berry J, Vieth R, Lanham-New S (2012) Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 95:1357–1364PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432PubMedPubMedCentralCrossRefGoogle Scholar
  173. Turner WL, Waller JC, Vanderbeld B, Snedden WA (2004) Cloning and characterization of two NAD kinases from Arabidopsis. identification of a calmodulin binding isoform. Plant Physiol 135:1243–1255PubMedPubMedCentralCrossRefGoogle Scholar
  174. Vagelos PR (1973) Acyl group transfer (acyl carrier protein). In: Boyer PD (ed) The Enzymes, vol 8. Academic Press, New York, pp 155–199Google Scholar
  175. Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathway for an old antioxidant. Trends Plant Sci 9:573–577PubMedCrossRefGoogle Scholar
  176. Varma TNS, Abraham A, Hansen IA (1961) Accumulation of 58Co vitamin B12 by Euglena gracilis. J Protozool 8:212–216CrossRefGoogle Scholar
  177. Velisek J, Davidek J (2000) Pantothenic acid. In: De Leenheer AP, Lambert WE, Van Bocxlaer JF (eds) Modern chromatographic analysis of vitamins. Marcel Dekker, Inc., New York, pp 555–600Google Scholar
  178. Waldrop GL, Holden HM, St Maurice M (2012) The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction mechanisms. Protein Sci 21:1597–1619PubMedPubMedCentralCrossRefGoogle Scholar
  179. Walther B, Karl JP, Booth SL, Boyaval P (2013) Menaquinones, bacteria, and the food supply: The relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 4:463–473Google Scholar
  180. Watanabe F (2007) Vitamin B12 sources and bioavailability. Exp Biol Med 232:1266–1274CrossRefGoogle Scholar
  181. Watanabe F, Nakano Y (1991) Comparative biochemistry of vitamin B12 (cobalamin) metabolism: biochemical diversity in the systems for intercellular cobalamin transfer and synthesis of the coenzymes. Int J Biochem 23:1353–1359PubMedCrossRefGoogle Scholar
  182. Watanabe F, Nakano Y, Kitaoka S (1987a) Purification and some properties of cytosolic cobalamin binding protein in Euglena gracilis. Biochem J 247:679–685PubMedPubMedCentralCrossRefGoogle Scholar
  183. Watanabe F, Nakano Y, Kitaoka S (1987b) Isolation and some properties of soluble and membrane-bound cobalamin-binding proteins of Euglena mitochondria. Arch Microbiol 149:30–35Google Scholar
  184. Watanabe F, Oki Y, Nakano Y, Kitaoka S (1987c) Occurrence and subcellular location of aquacobalamin reductase in Euglena gracilis. Agric Biol Chem 51:273–274CrossRefGoogle Scholar
  185. Watanabe F, Oki Y, Nakano Y, Kitaoka S (1987d) Purification and characterization of aquacobalamin reductase (NADPH) from Euglena gracilis. J Biol Chem 262:11514–11518PubMedGoogle Scholar
  186. Watanabe F, Nakano Y, Kitaoka S (1988a) Subcellular location and some properties of propionyl-Coenzyme A carboxylase in Euglena gracilis Z. Comp Biochem Physiol 89B:565–568Google Scholar
  187. Watanabe F, Ito T, Tabuchi T, Nakano Y, Kitaoka S (1988b) Isolation of pellicular cobalamin-binding proteins of the cobalamin uptake system of Euglena gracilis. J Gen Microbiol 134:67–74Google Scholar
  188. Watanabe F, Nakano Y, Ochi H, Kitaoka S (1988c) Purification, some properties and possible physiological role of an extracellular cobalamin binding protein from Euglena gracilis. J Gen Microbiol 134:1385–1389Google Scholar
  189. Watanabe F, Oki Y, Nakano Y, Kitaoka S (1988d) Occurrence and characterization of cyanocobalamin reductase (NADPH; CN-eliminating) involved in decyanation of cyanocobalamin in Euglena gracilis. J Nutr Sci Vitaminol 34:1–10PubMedCrossRefGoogle Scholar
  190. Watanabe F, Nakano Y, Tamura Y, Kitaoka S (1989) Transfer system of cobalamin from pellicle to cytosolic binding proteins in Euglena gracilis. Comp Biochem Physiol 94B:797–800Google Scholar
  191. Watanabe F, Nakano Y, Stupperich E (1992) Different corrinoid specificities for cell growth and the cobalamin uptake system in Euglena gracilis Z. J Gen Microbiol 138:1807–1813CrossRefGoogle Scholar
  192. Watanabe F, Nakano Y, Stupperich E, Ushikoshi U, Ushikoshi S, Ushikoshi I, Kitaoka S (1993a) A radioisotope dilution method for quantitation of total vitamin B12 in biological samples using isolated Euglena pellicle fragments as a solid-phase vitamin B12-binding material. Anal Chem 65:657–659CrossRefGoogle Scholar
  193. Watanabe F, Nakano Y, Tamura Y, Stupperich E (1993b) Corrinoid specificity of cytosolic cobalamin binding protein of Euglena gracilis. J Biochem 113:97–100PubMedCrossRefGoogle Scholar
  194. Watanabe F, Tamura Y, Stupperich E, Nakano Y (1993c) Uptake of cobalamin by Euglena mitochondria. J Biochem 114:793–799PubMedCrossRefGoogle Scholar
  195. Watanabe F, Yamaji R, Isegawa Y, Yamamoto T, Tamura Y, Nakano Y (1993d) Characterization of aquacobalamin reductase (NADPH) from Euglena gracilis. Arch Biochem Biophys 305:421–427PubMedCrossRefGoogle Scholar
  196. Watanabe F, Abe K, Tamura Y, Nakano Y (1996) Adenosylcobalamin-dependent methylmalonyl-CoA mutase isozymes in the photosynthetic protozoon Euglena gracilis Z. Microbiology 142:2631–2634PubMedCrossRefGoogle Scholar
  197. Watanabe F, Yabuta Y, Tanioka Y, Bito T (2013) Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects. J Agric Food Chem 61:6769–6775PubMedCrossRefGoogle Scholar
  198. Weete JD, Abril M, Blackwell M (2010) Phylogenetic Distribution of Fungal Sterols. PLoS One 5:e10899PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. elife 4:e06369PubMedCentralGoogle Scholar
  200. Whistance GR, Threlfall DR (1970) Biosynthesis of phtoquinones. Biochem J 117:593–600PubMedPubMedCentralCrossRefGoogle Scholar
  201. Wilkinson SR, Prathalingam SR, Taylor MC, Horn D, Kelly JM (2005) Vitamin C biosynthesis in trypanosomes: a role for the glycosome. Proc Natl Acad Sci U S A 102:11645–11650PubMedPubMedCentralCrossRefGoogle Scholar
  202. Willecke K, Ritter E, Lynen F (1969) Isolation of an acyl carrier component from the multienzyme complex of yeast fatty acid synthetase. Eur J Biochem 8:503–509PubMedCrossRefGoogle Scholar
  203. Wolpert JS, Ernst-Fonberg ML (1975) Dissociation and characterization of enzymes from a multienzyme complex involved in carbon dioxide fixation. Biochemistry 14:1103–1107PubMedCrossRefGoogle Scholar
  204. Wu F, Christen P, Gehring H (2011) A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. FASEB J 25:2109–2122PubMedCrossRefGoogle Scholar
  205. Yabuta Y, Yoshimura K, Takeda T, Shigeoka S (2000) Molecular characterization of tobacco mitochondrial L-galactono-γ-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiol 41:666–675PubMedCrossRefGoogle Scholar
  206. Yabuta Y, Takamatsu R, Kasagaki S, Watanabe F (2013) Isolation and expression of a cDNA encoding methylmalonic aciduria type A protein from Euglena gracilis Z. Metabolites 3:144–154PubMedPubMedCentralCrossRefGoogle Scholar
  207. Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206PubMedCrossRefGoogle Scholar
  208. Yokota A, Hosotani K, Kitaoka S (1982) Mechanism of metabolic regulation in photoassimilation of propionate in Euglena gracilis Z. Arch Biochem Biophys 249:530–537CrossRefGoogle Scholar
  209. Yokota A, Haga S, Kitaoka S (1985) Purification and some properties of glyoxylate resuctase (NADP+) and its functional location in mitochondria in Euglena gracilis z. Biochem J 227:211–216PubMedPubMedCentralCrossRefGoogle Scholar
  210. Zempleni J, Teixeira DC, Kuroishi T, Cordonier EL, Baier S (2012) Biotin requirements for DNA damage prevention. Mutat Res 733:58–60PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fumio Watanabe
    • 1
    Email author
  • Kazuya Yoshimura
    • 2
  • Shigeru Shigeoka
    • 3
  1. 1.Faculty of Agriculture, School of AgriculturalBiological and Environmental Sciences, Tottori UniversityTottoriJapan
  2. 2.Department of Food and Nutritional SciencesCollege of Bioscience and Biotechnology, Chubu UniversityKasugaiJapan
  3. 3.Faculty of AgricultureKindai UniversityNaraJapan

Personalised recommendations