Advertisement

C2 metabolism in Euglena

  • Masami NakazawaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 979)

Abstract

Euglenoids are able to assimilate fatty acids and alcohols with various carbon-chain lengths, and ethanol is known to be one of the best carbon sources to support the growth of Euglena gracilis. Ethanol is first oxidized to acetate by the sequential reactions of alcohol dehydrogenase and acetaldehyde dehydrogenase in the mitochondria, and then converted to acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is metabolized through the glyoxylate cycle which is a modified tricarboxylic acid (TCA) cycle in which isocitrate lyase (ICL) and malate synthase (MS) function to bypass the two decarboxylation steps of the TCA cycle, enabling the net synthesis of carbohydrates from C2 compounds. ICL and MS form a unique bifunctional enzyme localized in Euglena mitochondria, not in glyoxysome as in other eukaryotes. The unique glyoxylate and glycolate metabolism during photorespiration is also discussed in this chapter.

Keywords

Glyoxylate cycle Alcohol dehydrogenase Aldehyde dehydrogenase Gluconeogenesis Bifunctional enzyme Euglena gracilis glyoxylate cycle enzyme (EgGCE) 

Abbreviations

ACS

Acetyl-coenzyme A synthetase

ADH

Alcohol dehydrogenase

ALDH

Acetaldehyde dehydrogenase

CeGCE

Caenorhabditis elegans bifunctional glyoxylate cycle enzyme

CoA

Coenzyme A

EgGCE

Euglena gracilis bifunctional glyoxylate cycle enzyme

FBPase

Fructose-1,6-bisphosphatase

G6P

Glucose-6-phosphate

GGT

Glutamate:glyoxylate aminotransferase

ICL

Isocitrate lyase

MDH

Malate dehydrogenase

MS

Malate synthase

PEPCK

Phosphoenolpyruvate carboxykinase

PFK

Phosphofructokinase

PPi

Pyrophosphate

TCA

Tricarboxylic acid

Notes

Acknowledgement

The author thanks Dr. Hiroshi Inui and Dr. Akiho Yokota for their critical reading of the manuscript.

References

  1. Bari R, Kebeish R, Kalamajka R, Rademacher T, Peterhhänsel C (2004) A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana. J Exp Bot 55:623–630CrossRefPubMedGoogle Scholar
  2. Breidenbach RW, Beevers H (1967) Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun 27:462–469CrossRefPubMedGoogle Scholar
  3. Buetow DE (1968) The Biology of Euglena (vol 2). Academic Press, New YorkGoogle Scholar
  4. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37:D588–D592CrossRefPubMedGoogle Scholar
  5. Chauvin LS, Tural B Moroney JV (2008) Chlamydomonas reinhardtii has genes for both glycolate oxidase and glycolate dehydrogenase. In: Allen J, Osmond B, Golbeck JK, Gantt E (eds), Photosynthesis: energy from the sun. Proceedings of the 14th International Congress on Photosynthesis. Springer, pp 823–827Google Scholar
  6. Collins N, Merrett MJ (1975a) Microbody-marker enzymes during transition from phototropic to organotropic growth in Euglena. Plant Physiol 55:1018–1022CrossRefPubMedPubMedCentralGoogle Scholar
  7. Collins N, Brown RH, Merrett MJ (1975b) Oxidative phosphorylation during glycollate metabolism in mitochondria from phototrophic Euglena gracilis. Biochem J 150:373–377CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cook JR, Carver M (1966) Partial photo-repression of the glyoxylate by-pass in Euglena. Plant Cell Physiol 7:377–383Google Scholar
  9. Enomoto T, Miyatake K, Kitaoka S (1988) Purification and immunological properties of fructose 2,6-bisphosphate-sensitive pyrophosphate: D-fructose 6-phosphate 1-phosphotransferase from the protist Euglena gracilis. Comp Biochem Physiol Part B Comp Biochem 90:897–902Google Scholar
  10. Graves LB, Trelease RN, Grill A, Becker WM (1972) Localization of glyoxylate cycle enzymes in glyoxysomes in Euglena. J Protozool 19:527–532CrossRefPubMedGoogle Scholar
  11. Horrum MA, Schwartzbach SD (1981) Nutritional regulation of organelle biogenesis in Euglena. Plant Physiol 68:430–434CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hosotani K, Ohkochi T, Inui H, Yokota A, Nakano Y, Kitaoka S (1988) Photoassimilation of fatty acids, fatty alcohols and sugars by Euglena gracilis Z. J Gen Microbiol 134:61–66Google Scholar
  13. Inui H, Miyatake K, Nakano Y, Kitaoka S (1992) Synthesis of reserved polysaccharide from wax esters accumulated as the result of anaerobic energy generation in Euglena gracilis returned from anaerobic to aerobic conditions. Int J Biochem 24:799–803CrossRefGoogle Scholar
  14. James L, Schwartzbach S (1982) Differential regulation of phosphoglycolate and phosphoglycerate phosphatases in Euglena. Plant Sci Lett 27:223–232CrossRefGoogle Scholar
  15. Kornberg HL, Krebs HA (1957) Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179:988–991CrossRefPubMedGoogle Scholar
  16. Kunze M, Pracharoenwattana I, Smith SM, Hartig A (2006) A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim Biophys Acta 1763:1441–1452CrossRefPubMedGoogle Scholar
  17. Liu F, Thatcher JD, Barral JM, Epstein HF (1995) Bifunctional glyoxylate cycle protein of Caenorhabditis elegans: a developmentally regulated protein of intestine and muscle. Dev Biol 169:399–414CrossRefPubMedGoogle Scholar
  18. McKinley MP, Trelease RN (1978) Coexistence of isocitrate lyase and NADP-isocitrate dehydrogenase in Turbatrix aceti mitochondria. Biochem Biophys Res Commun 81:434–438CrossRefPubMedGoogle Scholar
  19. Merrett MJ, Lord JM (1973) Glycollate formation and metabolism by algae. New Phytol 72:751–767CrossRefGoogle Scholar
  20. Miyatake K, Ito T, Kitaoka S (1984a) Subcellular location and some properties of phosphoenolpyruvate carboxykinase (PEPCK) in Euglena gracilis. Agric Biol Chem 48:2139–2141Google Scholar
  21. Miyatake K, Enomoto T, Kitaoka S (1984b) Detection and subcellular distribution of pyrophosphate:D-fructose 6-phosphate phosphotransferase (PFP) in Euglena gracilis. Agric Biol Chem 48:2857–2859Google Scholar
  22. Munir I, Nakazawa M, Harano K, Yamaji R, Inui H, Miyatake K, Nakano Y (2002) Occurrence of a novel NADP+-linked alcohol dehydrogenase in Euglena gracilis. Comp Biochem Physiol B Biochem Mol Biol 132:535–540CrossRefPubMedGoogle Scholar
  23. Nakazawa M, Minami T, Teramura K, Kumamoto S, Hanato S, Takenaka S, Ueda M, Inui H, Nakano Y, Miyatake K (2005) Molecular characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, in Euglena gracilis. Comp Biochem Physiol B Biochem Mol Biol 141:445–452CrossRefPubMedGoogle Scholar
  24. Nakazawa M, Nishimura M, Inoue K, Ueda M, Inui H, Nakano Y, Miyatake K (2011) Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis. J Eukaryot Microbiol 58:128–133CrossRefPubMedGoogle Scholar
  25. Niessen M, Thiruveedhi K, Rosenkranz R, Kebeish R, Hirsch HJ, Kreuzaler F, Peterhänsel C (2007) Mitochondrial glycolate oxidation contributes to photorespiration in higher plants. J Exp Bot 58:2709–2715CrossRefPubMedGoogle Scholar
  26. Ohmann E (1964) Acetataktivierung in grünalgen. I. Oxidation und Aktivierung des Acetats in Euglena gracilis. Biochim Biophys Acta 82:325–335CrossRefPubMedGoogle Scholar
  27. Ono K, Miyatake K, Inui H, Kitaoka S, Nakano Y (1994) Induction of glyoxylate cycle-key enzymes, malate synthase, and isocitrate lyase in ethanol-grown Euglena gracilis. Biosci Biotechnol Biochem 58:582–583CrossRefGoogle Scholar
  28. Ono K, Kawanaka Y, Izumi Y, Inui H, Miyatake K, Kitaoka S, Nakano Y (1995) Mitochondrial alcohol dehydrogenase from ethanol-grown Euglena gracilis. J Biochem 117:1178–1182CrossRefPubMedGoogle Scholar
  29. Ono K, Kondo M, Osafune T, Miyatake K, Inui H, Kitaoka S, Nishimura M, Nakano Y (2003) Presence of glyoxylate cycle enzymes in the mitochondria of Euglena gracilis. J Eukaryot Microbiol 50:92–96CrossRefPubMedGoogle Scholar
  30. Peak M, Peak J, Ting I (1972) Isoenzymes of malate dehydrogenase and their regulation in Euglena gracilis Z. Biochim Biophys Acta 284:1–15CrossRefPubMedGoogle Scholar
  31. Rodríguez-Zavala JS, Ortiz-Cruz MA, Moreno-Sanchez R (2006) Characterization of an aldehyde dehydrogenase from Euglena gracilis. J Eukaryot Microbiol 53:36–42CrossRefPubMedGoogle Scholar
  32. Rubin H, Trelease RN (1976) Subcellular localization of glyoxylate cycle enzymes in Ascaris suum larvae. J Cell Biol 70:374–383CrossRefPubMedGoogle Scholar
  33. Wilson B, Danforth W (1958) The extent of acetate and ethanol oxidation by Euglena gracilis. J Gen Microbiol 18:535–542CrossRefPubMedGoogle Scholar
  34. Woodward J, Merrett MJ (1975) Induction potential for glyoxylate cycle enzymes during the cell cycle of Euglena gracilis. Eur J Biochem 55:555–559CrossRefPubMedGoogle Scholar
  35. Yokota A, Kitaoka S (1979) Occurrence and operation of the glycollate-glyoxylate shuttle in mitochondria of Euglena gracilis Z. Biochem J 184:189–192CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yokota A, Kitaoka S (1981) Occurrence and subcellular distribution of enzymes involved in the glycolate pathway and their physiological function in a bleached mutant of Euglena gracilis z. Agric Biol Chem 45:15–22Google Scholar
  37. Yokota A, Nakano Y, Kitaoka S (1978) Metabolism of glycolate in mitochondria of Euglena gracilis. Agric Biol Chem 42:121–129Google Scholar
  38. Yokota A, Kawabata A, Kitaoka S (1983) Mechanism of glyoxylate decarboxylation in the glycolate pathway in Euglena gracilis Z. Plant Physiol 71:772–776CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yokota A, Suehiro S, Kitaoka S (1985a) Purification and some properties of mitochondrial glutamate:glyoxylate aminotransferase and mechanism of its involvement in glycolate pathway in Euglena gracilis z. Arch Biochem Biophys 242:507–514CrossRefPubMedGoogle Scholar
  40. Yokota A, Komura H, Kitaoka S (1985b) Different metabolic fate of two carbons of glycolate in its conversion to serine in Euglena gracilis z. Arch Biochem Biophys 242:498–506CrossRefPubMedGoogle Scholar
  41. Yokota A, Komura H, Kitaoka S (1985c) Refixation of photorespired CO2 during photosynthesis in Euglena gracilis z. Agric Biol Chem 49:3309–3310Google Scholar
  42. Yokota A, Haga S, Kitaoka S (1985d) Purification and some properties of glyoxylate reductase (NADP+) and its functional location in mitochondria in Euglena gracilis z. Biochem J 227:211–216CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yokota A, Kitaoka S, Miura K, Wadano A (1985e) Reactivity of glyoxylate with hydrogen perioxide and simulation of the glycolate pathway of C3 plants and Euglena. Planta 165:59–67CrossRefPubMedGoogle Scholar
  44. Yoval-Sánchez B, Jasso-Chávez R, Lira-Silva E, Moreno-Sánchez R, Rodríguez-Zavala JS (2011) Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis. J Bioenerg Biomembr 43:519–530CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Life and Environmental SciencesOsaka Prefecture UniversityOsakaJapan

Personalised recommendations