Advertisement

Photomovement in Euglena

  • Donat-P. HäderEmail author
  • Mineo Iseki
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 979)

Abstract

Motile microorganisms such as the green Euglena gracilis use a number of external stimuli to orient in their environment. They respond to light with photophobic responses, photokinesis and phototaxis, all of which can result in accumulations of the organisms in suitable habitats. The light responses operate synergistically with gravitaxis, aerotaxis and other responses. Originally the microscopically obvious stigma was thought to be the photoreceptor, but later the paraxonemal body (PAB, paraflagellar body) has been identified as the light responsive organelle, located in the trailing flagellum inside the reservoir. The stigma can aid in light direction perception by shading the PAB periodically when the cell rotates helically in lateral light, but stigmaless mutants can also orient with respect to the light direction, and negative phototaxis does not need the presence of the stigma. The PAB is composed of dichroically oriented chromoproteins which is reflected in a pronounced polarotaxis in polarized light. There was a long debate about the potential photoreceptor molecule in Euglena, including carotenoids, flavins and rhodopsins. This discussion was terminated by the unambiguous proof that the photoreceptor is a 400 kDa photoactivated adenylyl cyclase (PAC) which consists of two α- and two β-subunits each. Each subunit possesses two BLUF (Blue Light receptor Using FAD) domains binding FAD, which harvest the light energy, and two adenylyl cyclases, which produce cAMP from ATP. The cAMP has been found to activate one of the five protein kinases found in Euglena (PK.4). This enzyme in turn is thought to phosphorylate proteins inside the flagellum which result in a change in the flagellar beating pattern and thus a course correction of the cell. The involvements of PAC and protein kinase have been confirmed by RNA interference (RNAi). PAC is responsible for step-up photophobic responses as well as positive and negative phototaxis, but not for the step-down photophobic response, even though the action spectrum of this resembles those for the other two responses. Analysis of several colorless Euglena mutants and the closely related Euglena longa (formerly Astasia longa) confirms the results. Photokinesis shows a completely different action spectrum. Some other Euglena species, such as E. sanguinea and the gliding E. mutabilis, have been investigated, again showing totally different action spectra for phototaxis and photokinesis as well as step-up and step-down photophobic responses.

Keywords

Astasia Euglena longa Euglena gracilis Euglena mutabilis Flavin Photoactivated adenylyl cyclase Photokinesis Photophobic reactions Photoreceptor Phototaxis Protein kinase Pterin Sensory transduction 

Notes

Acknowledgements

The authors thank their long-time coworkers Peter Richter, Maria Ntefidou and Sebastian Strauch, who have critically read this manuscript. The financial support for the underlying work for this review by DFG, DLR, BMBF and JSPS is gratefully acknowledged.

References

  1. Ahmed H, Häder D-P (2011) Monitoring of waste water samples using the ECOTOX biosystem and the flagellate alga Euglena gracilis. Water Air Soil Pollut 216(1–4):547–560CrossRefGoogle Scholar
  2. de Araujo FFT, Pires MA, Frankel RB, Bicudo CEM (1986) Magnetite and magnetotaxis in algae. Biophys J 50:375–378PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ascoli C (1975) New techniques in photomotion methodology. In: Colombetti G (ed) Biophysics of photoreceptors and photobehaviour of microorganisms. Lito Felici, Pisa, pp 109–120Google Scholar
  4. Azizullah A, Murad W, Adnan M, Ullah W, Häder D-P (2013) Gravitactic orientation of Euglena gracilis—a sensitive endpoint for ecotoxicological assessment of water pollutants. Front Environ Sci 1:4CrossRefGoogle Scholar
  5. Azizullah A, Jamil M, Richter P, Häder D-P (2014) Fast bioassessment of wastewater and surface water quality using freshwater flagellate Euglena gracilis—a case study from Pakistan. J Appl Phycol 26(1):421–431CrossRefGoogle Scholar
  6. Banchetti R, Rosati G, Verni F (1980) Cytochemical analysis of the photoreceptor in Euglena gracilis Klebs (Flagellata Euglenoidina). Monit Zool Ital (NS) 14:165–171Google Scholar
  7. Barghigiani C, Colombetti G, Lenci F, Banchetti R, Bizzaro MP (1979a) Photosensory transduction in Euglena gracilis: effect of some metabolic drugs on the photophobic response. Arch Microbiol 120:239–245CrossRefGoogle Scholar
  8. Barghigiani C, Colombetti G, Tranchini B, Lenci F (1979b) Photobehavior of Euglena gracilis: action spectrum for the stepdown photophobic response of individual cells. Photochem Photobiol 29:1015–1019CrossRefGoogle Scholar
  9. Barsanti L, Passarelli V, Lenzi P, Gualtieri P (1992) Elimination of photoreceptor (paraflagellar swelling) and photoreception in Euglena gracilis by means of the carotenoid biosynthesis inhibitor nicotine. J Photochem Photobiol B Biol 13:135–144CrossRefGoogle Scholar
  10. Barsanti L, Passarelli V, Lenci P, Walne PL, Dunlap JR, Gualtieri P (1993a) Effects of hydroxylamine, digitonin and triton X-100 on photoreceptor (paraflagellar swelling) and photoreception of Euglena gracilis. Vis Res 33:2043–2050PubMedCrossRefGoogle Scholar
  11. Barsanti L, Evangelista V, Passarelli V, Frassanito AM, Gualtieri P (2012) Fundamental questions and concepts about photoreception and the case of Euglena gracilis. Integr Biol 4(1):22–36CrossRefGoogle Scholar
  12. Batra PP, Tollin G (1964) Phototaxis in Euglena. I. Isolation of the eye-spot granules and identification of the eye-spot pigments. Biochim Biophys Acta 79:371–378PubMedCrossRefGoogle Scholar
  13. Bendix SW (1960) Pigments in phototaxis. In: Allen MB (ed) Comparative Biochemistry of Photoreactive. Systems Academic Press, New York, pp 107–127Google Scholar
  14. Benedetti PA, Checcucci A (1975) Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis. Plant Sci Lett 4:47–51CrossRefGoogle Scholar
  15. Benedetti PA, Lenci F (1977) In vivo microspectrofluorometry of photoreceptor pigments in Euglena gracilis. Photochem Photobiol 26:315–318CrossRefGoogle Scholar
  16. Benedetti PA, Bianchini G, Checcucci A, Ferrara R, Grassi S (1976) Spectroscopic properties and related functions of the stigma measured in living cells of Euglena gracilis. Arch Microbiol 111:73–76PubMedCrossRefGoogle Scholar
  17. Bensasson RW (1975) Spectroscopic and biological properties of carotenoids. In: Colombetti G (ed) Biophysics of Photoreceptors and Photobehaviour of Microorganisms. Lito Felici, Pisa, pp 146–163Google Scholar
  18. Bouck GB (2012) Flagella and the cell surface. Physiology 3:29Google Scholar
  19. Bound KE, Tollin G (1967) Phototactic response of Euglena gracilis to polarized light. Nature 216:1042–1044CrossRefGoogle Scholar
  20. Bovee EC, Jahn TL (1972) A theory of piezoelectric activity and ion movements in the relation of flagellar structures and their movements to the phototaxis of Euglena. J Theor Biol 35:259–276PubMedCrossRefGoogle Scholar
  21. Brodhun B, Häder D-P (1990) Photoreceptor proteins and pigments in the paraflagellar body of the flagellate Euglena gracilis. Photochem Photobiol 52:865–871CrossRefGoogle Scholar
  22. Brodhun B, Häder D-P (1993) UV-induced damage of photoreceptor proteins in the paraflagellar body of Euglena gracilis. Photochem Photobiol 58:270–274CrossRefGoogle Scholar
  23. Brodhun B, Häder D-P (1995a) A novel procedure to isolate the chromoproteins in the paraflagellar body of the flagellate Euglena gracilis. J Photochem Photobiol B Biol 28:39–45CrossRefGoogle Scholar
  24. Brodhun B, Häder D-P (1995b) UV-induced damage of photoreceptor pigments and proteins in the paraflagellar body of the flagellate Euglena gracilis. Proceedings of the first European symposium on the effects of environmental UV-B radiation on health and ecosystems, EUR, vol 15607, pp 33–332Google Scholar
  25. Brodhun B, Neumann R, Hertel R, Häder D-P (1994) Riboflavin-binding sites in the flagella of Euglena gracilis and Astasia longa. J Photochem Photobiol B Biol 23:135–139CrossRefGoogle Scholar
  26. Bruce VG (1973) The role of the clock in controlling phototactic rhythms. In: Pérez-Miravete A (ed) Behaviour of Microorganisms. Plenum Press, New York, pp 257–266CrossRefGoogle Scholar
  27. Bruce VG, Pittendrigh C (1956) Temperature independence in a unicellular clock. Proc Natl Acad Sci U S A 42:676–682PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bruce VG, Pittendrigh CS (1958) Resetting the Euglena clock with a single light stimulus. Am Nat 92:295–306CrossRefGoogle Scholar
  29. Buder J (1919) Zur Kenntnis der phototaktischen Richtungsbewegungen. Jahrb Wiss Bot 58:105–220Google Scholar
  30. Buetow DE (1968a) The Biology of Euglena. Academic Press, New YorkGoogle Scholar
  31. Buetow DE (1968b) Morphology and ultrastructure of Euglena. In: Buetow DE (ed) The Biology of Euglena. Academic Press, New York, pp 109–184Google Scholar
  32. Bünning E (1973) The Physiological Clock, 3rd edn. English Univ. Press, LondonGoogle Scholar
  33. Capaldo CT, Farkas AE, Nusrat A (2014) Epithelial adhesive junctions. F1000prime reports 6Google Scholar
  34. Carre IA, Laval-Martin DL, Edmunds LN Jr (1989) Circadian changes in cyclic AMP levels in synchronously dividing and stationary-phase cultures of the achlorophyllous ZC mutant of Euglena gracilis. J Cell Sci 94:267–272Google Scholar
  35. Checcucci A, Colombetti G, del Carratore G, Ferrara R, Lenci F (1974) Red light induced accumulation of Euglena gracilis. Photochem Photobiol 19:223–226CrossRefGoogle Scholar
  36. Checcucci A, Favati L, Grassi S, Piaggesi T (1975) The measurement of phototactic activity in Euglena gracilis Klebs. Monit Zool Ital 9:83–98Google Scholar
  37. Checcucci A, Colombetti G, Ferrara R, Lenci F (1976) Action spectra for photoaccumulation of green and colorless Euglena: evidence for identification of receptor pigments. Photochem Photobiol 23:51–54PubMedCrossRefGoogle Scholar
  38. Clayton R (1959) Phototaxis of purple bacteria. Handbuch der Pflanzenphysiologie 17/1:371–387Google Scholar
  39. Clayton RK (1964) Phototaxis in microorganisms. In: Giese AC (ed) Photophysiology, vol 2. Academic Press, New York, pp 51–77CrossRefGoogle Scholar
  40. Colombetti G, Diehn B (1978) Chemosensory responses toward oxygen in Euglena gracilis. J Protozool 25:211–217CrossRefGoogle Scholar
  41. Colombetti G, Häder D-P, Lenci F, Quaglia M (1982) Phototaxis in Euglena gracilis: effect of sodium azide and triphenylmethyl phosphonium ion on the photosensory transduction chain. Curr Microbiol 7:281–284CrossRefGoogle Scholar
  42. Creutz C, Diehn B (1976) Motor responses to polarized light and gravity sensing in Euglena gracilis. J Protozool 23:552–556CrossRefGoogle Scholar
  43. Cypionka H (2010) Eukaryotische Mikroorganismen. Grundlagen der Mikrobiologie 47–60Google Scholar
  44. Daiker V, Häder D-P, R. RP, Lebert M (2011) The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. Planta 233:1055–1062.Google Scholar
  45. Diehn B (1969a) Action spectra of the phototactic responses in Euglena. Biochim Biophys Acta 177:136–143PubMedCrossRefGoogle Scholar
  46. Diehn B (1969b) Phototactic responses of Euglena to single and repetitive pulses of actinic light: orientation time and mechanism. Exp Cell Res 56:375–381PubMedCrossRefGoogle Scholar
  47. Diehn B (1969c) Two perpendicularly oriented pigment systems involved in phototaxis of Euglena. Nature 122:366–367CrossRefGoogle Scholar
  48. Diehn B (1973) Phototaxis in Euglena. 1. Physiological basis of photoreception and tactic orientation. In: Pérez-Miravete A (ed) Behaviour of Microorganisms. Plenum Press, New York, pp 83–90CrossRefGoogle Scholar
  49. Diehn B, Tollin G (1966) Phototaxis in Euglena. II. Physical factors determining the rate of phototactic response. Photochem Photobiol 5:523–557CrossRefGoogle Scholar
  50. Diehn B, Tollin G (1967) Phototaxis in Euglena. IV. Effect of inhibitiors of oxidative and photophosphorylation on the rate of phototaxis. Arch Biochem Biophys 121:169–177PubMedCrossRefGoogle Scholar
  51. Diehn B, Fonseca JR, Jahn TR (1975) High speed cinemicrography of the direct photophobic response of Euglena and the mechanism of negative phototaxis. J Protozool 22:492–494CrossRefGoogle Scholar
  52. Diskus A (1955) Färbestudien an den Schleimkörperchen und Schleimausscheidungen einiger Euglenen. Protoplasma 45:460–477CrossRefGoogle Scholar
  53. Dodge JD (1969) A review of the fine structure of algal eyespots. Brit Phycol J 4:199–210Google Scholar
  54. Doughty MJ (1991) A kinetic analysis of the step-up photophobic response of the flagellated alga Euglena gracilis in culture medium. J Photochem Photobiol B Biol 9:75–85CrossRefGoogle Scholar
  55. Doughty MJ, Diehn B (1979) Photosensory transduction in the flagellated alga, Euglena gracilis. I. Action of divalent cations Ca2+ antagonists and Ca2+ ionophore on motility and photobehavior. Biochim Biophys Acta 588:148–168PubMedCrossRefGoogle Scholar
  56. Doughty MJ, Diehn B (1982) Photosensory transduction in the flagellated alga, Euglena gracilis. III. Induction of Ca2+-dependent responses by monovalent cation ionophores. Biochim Biophys Acta 682:32–43CrossRefGoogle Scholar
  57. Doughty MJ, Diehn B (1983) Photosensory transduction in the flagellated alga, Euglena gracilis. IV. Long term effects of ions and pH on the expression of step-down photobehaviour. Arch Microbiol 134:204–207CrossRefGoogle Scholar
  58. Doughty MJ, Diehn B (1984) Anion sensitivity of motility and step-down photophobic responses of Euglena gracilis. Arch Microbiol 138:329–332CrossRefGoogle Scholar
  59. Edmunds LN Jr (1984) Physiology of circadian rhythms in microorganisms. In: Rose AH, Tempest DW (eds) Advances in Microbial Physiology, vol 25. Academic Press, London, pp 61–148Google Scholar
  60. Engelmann TW (1883) Bakterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht- und Farbensinnes. Pflugers Arch 30:95–124CrossRefGoogle Scholar
  61. Evangelista V, Passarelli V, Barsanti L, Gualtieri P (2003) Fluorescence behavior of Euglena photoreceptor. Photochem Photobiol 78(1):93–97PubMedCrossRefGoogle Scholar
  62. Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512PubMedPubMedCentralCrossRefGoogle Scholar
  63. Feinleib ME (1975) Phototactic response of Chlamydomonas to flashes of light. I. Response of cell population. Photochem Photobiol 21:351–354PubMedCrossRefGoogle Scholar
  64. Feinleib ME, Curry GM (1967) Methods for measuring phototaxis of cell populations and individual cells. Physiol Plant 20:1083–1095CrossRefGoogle Scholar
  65. Feinleib MEH, Curry GM (1971) The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas. Physiol Plant 25:346–352CrossRefGoogle Scholar
  66. Feldman JF, Bruce VG (1972) Circadian rhythm changes in autotrophic Euglena induced by organic carbon sources. J Protozool 19:370–373PubMedCrossRefGoogle Scholar
  67. Fenchel T (2013) Ecology of Protozoa: The Biology of Free-living Phagotropic Protists. Springer-Verlag, BerlinGoogle Scholar
  68. Ferrara R, Banchetti R (1976) Effect of streptomycin on the structure and function of the photoreceptor apparatus of Euglena gracilis. J Exp Zool 198:393–402PubMedCrossRefGoogle Scholar
  69. Fong F, Schiff JA (1978) Blue-light absorbance changes and phototaxis in Euglena. Plant Physiol 61(Suppl):74Google Scholar
  70. Fong F, Schiff JA (1979) Blue-light-inducted absorbance changes associated with carotenoids in Euglena. Planta 146:119–127PubMedCrossRefGoogle Scholar
  71. Forreiter C, Wagner G (2012) Photomovement versus photoadaptation. Progr Bot Genet Physiol System Ecol 64:258Google Scholar
  72. Foster KW (2001) Action spectroscopy of photomovement. In: Häder D-P, Lebert M (eds) Photomovement, vol 1. Elsevier, Amsterdam, pp 51–115CrossRefGoogle Scholar
  73. Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Rev 44:572–630PubMedPubMedCentralGoogle Scholar
  74. France RH (1908) Experimentelle Untersuchungen über Reizbewegungen und Lichtsinnesorgane der Algen. Ztschrift Ausbau Entwicklungslehre 2:29–43Google Scholar
  75. France RH (1909) Untersuchungen über die Sinnesorganfunktion der Augenflecke bei Algen. Arch Hydrobiol 4:37–48Google Scholar
  76. Frey-Wyssling A, Mühlethaler K (1960) Über den Feinbau der Euglena-Zelle. Schweiz Z Hydrol 22:122–130Google Scholar
  77. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642PubMedCrossRefGoogle Scholar
  78. Froehlich O, Diehn B (1974) Photoeffects in a flavin-containing lipid bilayer membrane and implications for algal phototaxis. Nature 248:802–804PubMedCrossRefGoogle Scholar
  79. Fujiyoshi S, Hirano M, Matsushita M, Iseki M, Watanabe M (2011) Structural change of a cofactor binding site of flavoprotein detected by single-protein fluorescence spectroscopy at 1.5 K. Phys Rev Lett 106(7):078101PubMedCrossRefGoogle Scholar
  80. Galland P, Senger H (1988a) The role of flavins as photoreceptors. J Photochem Photobiol B Biol 1:277–294CrossRefGoogle Scholar
  81. Galland P, Senger H (1988b) The role of pterins in the photoreception and metabolism of plants. Photochem Photobiol 48:811–820CrossRefGoogle Scholar
  82. Galland P, Keiner P, Dörnemann D, Senger H, Brodhun B, Häder D-P (1990) Pterin- and flavin-like fluorescence associated with isolated flagella of Euglena gracilis. Photochem Photobiol 51:675–680Google Scholar
  83. Gerber S, Häder D-P (1993) Effects of solar irradiation on motility and pigmentation of three species of phytoplankton. Environ Exp Bot 33:515–521CrossRefGoogle Scholar
  84. Gerber S, Häder D-P (1994) Effects of enhanced UV-B irradiation on the red coloured freshwater flagellate Euglena sanguinea. FEMS Microbiol Ecol 13:177–184CrossRefGoogle Scholar
  85. Gerber S, Häder D-P (1995) Effects of artificial UV-B and simulated solar radiation on the flagellate Euglena gracilis: physiological, spectroscopical and biochemical investigations. Acta Protozool 34:13–20Google Scholar
  86. Gerber S, Biggs A, Häder D-P (1996) A polychromatic action spectrum for the inhibition of motility in the flagellate Euglena gracilis. Acta Protozool 35:161–165Google Scholar
  87. Ghetti F, Colombetti G, Lenci F, Campani E, Polacco E, Quaglia M (1985) Fluorescence of Euglena gracilis photoreceptor pigment: an in vitro microspectrofluorometric study. Photochem Photobiol 42:29–33CrossRefGoogle Scholar
  88. Giometto A, Altermatt F, Maritan A, Stocker R, Rinaldo A (2015) Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis. Proc Natl Acad Sci U S A 112(22):7045–7050PubMedPubMedCentralCrossRefGoogle Scholar
  89. Gojdics M (1939) Some observations on Euglena sanguinea Ehrbg. Trans Am Microsc Soc 58:241–248CrossRefGoogle Scholar
  90. Gomelsky M, Kaplan S (1995) appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 177:4609–4618PubMedPubMedCentralCrossRefGoogle Scholar
  91. Gomelsky M, Kaplan S (1998) AppA, a redox regulator of photosystem formation in Rhodobacter sphaeroides 2.4.1, is a flavoprotein. Identification of a novel FAD binding domain. J Biol Chem 273:35319–35325PubMedCrossRefGoogle Scholar
  92. Gössel I (1957) Über das Aktionsspektrum der Phototaxis chlorophyllfreier Euglenen und über die Absorption des Augenflecks. Arch Microbiol 27:288–305Google Scholar
  93. Govorunova EG, Sineshchekov OA (2005) Chemotaxis in the green flagellate alga Chlamydomonas. Biochemistry (Mosc) 70(7):717–725CrossRefGoogle Scholar
  94. Govorunova EG, Jung KH, Sineshchekov OA, Spudich JL (2004) Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. Biophys J 86(4):2342–2349PubMedPubMedCentralCrossRefGoogle Scholar
  95. Gualtieri P (1993a) A biological point of view on photoreception (no-imaging vision) in algae. J Photochem Photobiol B Biol 18:95–100CrossRefGoogle Scholar
  96. Gualtieri P (1993b) Euglena gracilis: is the photoreception enigma solved? J Photochem Photobiol B Biol 19:3–14CrossRefGoogle Scholar
  97. Gualtieri P (2001) Rhodopsin-like-proteins: light detection pigments in Leptolyngbya, Euglena, Ochromonas, Pelvetia. In: Häder D-P, Lebert M (eds) Photomovement, vol 1. Elsevier, Amsterdam, pp 281–295CrossRefGoogle Scholar
  98. Gualtieri P, Barsanti L, Rosati G (1986) Isolation of the photoreceptor (paraflgellar body) of the phototactic flagellate Euglena gracilis. Arch Microbiol 145:303–305CrossRefGoogle Scholar
  99. Häder D-P (1979) Photomovement. In: Haupt W, Feinleib ME (eds) Encyclopedia of Plant Physiology, New Series, vol 7. Springer, Berlin, Heidelberg, pp 268–309Google Scholar
  100. Häder D-P (1985) Effect of UV-B on motility and photobehavior in the green flagellate, Euglena gracilis. Arch Microbiol 141:159–163CrossRefGoogle Scholar
  101. Häder D-P (1986) Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate Euglena gracilis. Photochem Photobiol 44:651–656CrossRefGoogle Scholar
  102. Häder D-P (1987a) Photomovement in eukaryotic microorganisms. Photobiochem Photobiophys, Suppl: 203–214Google Scholar
  103. Häder D-P (1987b) Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch Microbiol 147:179–183PubMedCrossRefGoogle Scholar
  104. Häder D-P (1991) Phototaxis and gravitaxis in Euglena gracilis. In: Lenci F, Ghetti F, Colombetti G, Häder D-P, Song P-S (eds) Biophysics of Photoreceptors and Photomovements in Microorganisms. Plenum Press, New York, pp 203–221CrossRefGoogle Scholar
  105. Häder D-P (1993) Simulation of phototaxis in the flagellate Euglena gracilis. J Biol Phys 19:95–108CrossRefGoogle Scholar
  106. Häder D-P (1997) Gravitaxis and phototaxis in the flagellate Euglena studied on TEXUS missions. In: Cogoli A, Friedrich U, Mesland D, Demets R (eds) Life Science Experiments Performed on Sounding Rockets (1985–1994). ESTEC, ESA Publications Division, Noordwijk, pp 77–79Google Scholar
  107. Häder D-P (1998) Orientierung im Licht: Phototaxis bei Euglena gracilis. Mikrokosmos 87:3–11Google Scholar
  108. Häder D-P (2003) UV-B impact on the life of aquatic plants. In: Ambasht RS, Ambasht NK (eds) Modern Trends in Applied Aquatic Ecology. Kluwer Acad./Plenum Publ, New York, pp 149–172CrossRefGoogle Scholar
  109. Häder D-P (2004) Photoecology and environmental photobiology. In: Horspool W, Lenci F (eds) CRC Handbook of Organic Photochemistry and Photobiology, vol 2. CRC Press, Boca Raton, pp 1161–1167Google Scholar
  110. Häder D-P, Brodhun B (1991) Effects of ultraviolet radiation on the photoreceptor proteins and pigments in the paraflagellar body of the flagellate, Euglena gracilis. J Plant Physiol 137:641–646CrossRefGoogle Scholar
  111. Häder D-P, Griebenow K (1988) Orientation of the green flagellate, Euglena gracilis, in a vertical column of water. FEMS Microbiol Ecol 53:159–167CrossRefGoogle Scholar
  112. Häder D-P, Häder MA (1988) Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation. Arch Microbiol 150:20–25CrossRefGoogle Scholar
  113. Häder D-P, Lebert M (1998) The photoreceptor for phototaxis in the photosynthetic flagellate Euglena gracilis. Photochem Photobiol 68:260–265CrossRefGoogle Scholar
  114. Häder D-P, Lebert M (2000) Real-time tracking of microorganisms. In: Häder D-P (ed) Image Analysis: Methods and Applications. CRC Press, Boca Raton, pp 393–422Google Scholar
  115. Häder D-P, Lebert M 2009 Photoorientation in photosynthetic flagellates. In: Jin T, Hereld D, editors. Methods in Molecular Biology. Totowa: Humana Press. 571. p. 51–65.Google Scholar
  116. Häder D-P, Lipson ED (1986) Fourier analysis of angular distributions for motile microorganisms. Photochem Photobiol 44:657–663CrossRefGoogle Scholar
  117. Häder D-P, Liu SM (1991) Biochemical isolation and spectroscopic characterization of possible photoreceptor pigments for phototaxis in a freshwater Peridinium. Photochem Photobiol 54:143–146CrossRefGoogle Scholar
  118. Häder D-P, Melkonian M (1983) Phototaxis in the gliding flagellate, Euglena mutabilis. Arch Microbiol 135:25–29CrossRefGoogle Scholar
  119. Häder D-P, Reinecke E (1991) Phototactic and polarotactic responses of the photosynthetic flagellate, Euglena gracilis. Acta Protozool 30:13–18Google Scholar
  120. Häder D-P, Colombetti G, Lenci F, Quaglia M (1981) Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch Microbiol 130:78–82CrossRefGoogle Scholar
  121. Häder D-P, Lebert M, Di Lena MR (1986) New evidence for the mechanism of phototactic orientation of Euglena gracilis. Curr Microbiol 14:157–163CrossRefGoogle Scholar
  122. Häder D-P, Lebert M, DiLena MR (1987) Effects of culture age and drugs on phototaxis in the green flagellate, Euglena gracilis. Plant Physiol 6:169–174Google Scholar
  123. Häder D-P, Ntefidou M, Iseki M, Watanabe M (2005) Phototaxis photoreceptor in Euglena gracilis. In: Wada M, Shimazaki K, Iino M (eds) Light Sensing in Plants. Springer, Tokyo, pp 223–229CrossRefGoogle Scholar
  124. Häder D-P, Richter P, Villafañe VE, Helbling EW (2014) Influence of light history on the photosynthetic and motility responses of Gymnodinium chlorophorum exposed to UVR and different temperatures. J Photochem Photobiol B Biol 138:273–281CrossRefGoogle Scholar
  125. Harz H, Nonnengässer C, Hegemann P (1992) The photoreceptor current of the green alga Chlamydomonas. Philos Trans R Soc London B 338:39–52CrossRefGoogle Scholar
  126. Hasle RG (1950) Phototactic vertical migration in marine dinoflagellates. Oikos 2:162–175CrossRefGoogle Scholar
  127. Haupt W (1959) Die Phototaxis der Algen. Handbuch der Pflanzenphysiologie 17(1):318–370Google Scholar
  128. Heelis DV, Kernick W, Philips GO, Davies K (1979) Separation and identification of the carotenoid pigments of stigmata isolated from light-grown cells of Euglena gracilis strain Z. Arch Microbiol 121:207–211PubMedCrossRefGoogle Scholar
  129. Heelis DV, Heelis PF, Kernick WA, Phillips GO (1980) The stigma of Euglena gracilis strain Z: an investigation into the possible occurance of carotenoproteins and nuleic acids. Cytobios 29:135–143PubMedGoogle Scholar
  130. Hill NA, Häder D-P (1997) A biased random walk for the trajectories of swimming micro-organisms. J Theor Biol 186:503–526PubMedCrossRefGoogle Scholar
  131. Hill N, Plumpton L (2000) Control strategies for the polarotactic orientation of the microorganism Euglena gracilis. J Theor Biol 203(4):357–365PubMedCrossRefGoogle Scholar
  132. Hill NA, Vincent RV (1993) A simple model and strategies for orientation in phototactic microorganisms. J Theor Biol 163:223–235CrossRefGoogle Scholar
  133. Hu C, Wang S, Guo L, Xie P (2014) Effects of the proximal factors on the diel vertical migration of zooplankton in a plateau meso-eutrophic Lake Erhai, China. J Limnol 73(2):375–386CrossRefGoogle Scholar
  134. Hyams JS (1982) The Euglena paraflagellar rod: structure, relationship to other flagellar components and preliminary biochemical characterization. J Cell Sci 55:199–210PubMedGoogle Scholar
  135. Inaba K, Mizuno K, Shiba K (2014) Structure, function, and phylogenetic consideration of calaxin. In: Sexual Reproduction in Animals and Plants. Springer, Tokyo, pp 49–57CrossRefGoogle Scholar
  136. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida C, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051PubMedCrossRefGoogle Scholar
  137. Ito S, Murakami A, Sato K, Nishina Y, Shiga K, Takahashi T, Higashi S, Iseki M, Watanabe M (2005) Photocycle features of heterologously expressed and assembled eukaryotic flavin-binding BLUF domains of photoactivated adenylyl cyclase (PAC), a blue light receptor in Euglena gracilis. Photochem Photobiol Sci 4:762–769PubMedCrossRefGoogle Scholar
  138. Ito S, Murakami A, Iseki M, Takahashi T, Higashi S, Watanabe M (2010) Differentiation of photocycle characteristics of flavin-binding BLUF domains of α-and β-subunits of photoactivated adenylyl cyclase of Euglena gracilis. Photochem Photobiol Sci 9(10):1327–1335PubMedCrossRefGoogle Scholar
  139. Itoh A, Tamura W (2008) Object manipulation by a formation-controlled Euglena group. In: Bio-mechanisms of Swimming and Flying. Springer, Tokyo, pp 41–52CrossRefGoogle Scholar
  140. Iwata T, Watanabe A, Iseki M, Watanabe M, Kandori H (2011) Strong donation of the hydrogen bond of tyrosine during photoactivation of the BLUF domain. J Phys Chem Lett 2(9):1015–1019CrossRefGoogle Scholar
  141. Iwatsuki K (1992) Stentor coeruleus shows positive photokinesis. Photochem Photobiol 55:469–471CrossRefGoogle Scholar
  142. James TW, Crescitelli F, Loew ER, McFarland WN (1992) The eyespot of Euglena gracilis: a microspectrophotometric study. Vis Res 32:1583–1591PubMedCrossRefGoogle Scholar
  143. Jennings HS (1906) Behavior of the Lower Organisms. Columbia University Press, New YorkCrossRefGoogle Scholar
  144. Johnson CH, Kondo T, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. Plant Physiol 97:1122–1129PubMedPubMedCentralCrossRefGoogle Scholar
  145. Josef K, Saranak J, Foster KW (2005) Ciliary behavior of a negatively phototactic Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 61:97–111PubMedCrossRefGoogle Scholar
  146. Karnkowska A, Bennett MS, Watza D, Kim JI, Zakryś B, Triemer RE (2015) Phylogenetic relationships and morphological character evolution of photosynthetic Euglenids (Excavata) inferred from taxon-rich analyses of five genes. J Eukaryot Microbiol 62(3):362–373PubMedCrossRefGoogle Scholar
  147. Kavaliers M, Ossenkopp K-P (1994) Effects of magnetic and electric fields in invertebrates and lower vertebrates. In: Carpenter DO, Ayrapetyan S (eds) Biological Effects of Electric and Magnetic Fields. Sources and Mechanisms, vol 1. Academic Press Inc., San Diego, pp 205–240CrossRefGoogle Scholar
  148. Kessler JO, Hill NA, Häder D-P (1992) Orientation of swimming flagellates by simultaneously acting external factors. J Phycol 28:816–822CrossRefGoogle Scholar
  149. Kim D (2013) Control of Tetrahymena pyriformis as a microrobot. PhD thesis, Drexel UniversityGoogle Scholar
  150. Kim YJ, Chizhov I, Engelhard M (2009) Functional expression of the signaling complex sensory rhodopsin II/transducer II from Halobacterium salinarum in Escherichia coli. Photochem Photobiol 85(2):521–528PubMedCrossRefGoogle Scholar
  151. Kiriyama H, Nanmori T, Hari K, Matsuoka D, Fukami Y, Kikkawa U, Yasuda T (1999) Identification of the catalytic subunit of cAMP-dependent protein kinase from the photosynthetic flagellate, Euglena gracilis Z. FEBS Lett 450(1):95–100PubMedCrossRefGoogle Scholar
  152. Kisielewska G, Kolicka M, Zawierucha K (2015) Prey or parasite? The first observations of live Euglenida in the intestine of Gastrotricha. Eur J Protistol 51(2):138–141PubMedCrossRefGoogle Scholar
  153. Kivic PA, Vesk M (1972a) Structure and function in the euglenoid eyespot apparatus: The fine structure, and response to environmental changes. Planta 105:1–14PubMedCrossRefGoogle Scholar
  154. Kivic PA, Vesk M (1972b) Structure and function of the euglenoid eyespot. The probable location of the phototaxis photoreceptor. J Exp Bot 23:1070–1075CrossRefGoogle Scholar
  155. Kivic PA, Vesk M (1974a) Pinocytotic uptake of protein from the reservoir in Euglena. Arch Microbiol 96:155–159CrossRefGoogle Scholar
  156. Kivic PA, Vesk M (1974b) The structure of the eyespot apparatus in bleached strains of Euglena gracilis. Cytobiologie 10:88–101Google Scholar
  157. Kivic PA, Walne PL (1983) Algal photosensory apparatus probably represent multiple parallel evolutions. Biosystems 16:31–38PubMedCrossRefGoogle Scholar
  158. Komsic-Buchmann K, Becker B (2012) Contractile Vacuoles in Green Algae–Structure and Function. Advances in Algal Cell Biology. Walter de Gruyter, Berlin, pp 123–141Google Scholar
  159. Koumura Y, Suzuki T, Yoshikawa S, Watanabe M, Iseki M (2004) The origin of photoactivated adenylyl cyclase (PAC), the Euglena blue-light receptor: phylogenetic analysis of orthologues of PAC subunits from several euglenoids and trypanosome-type adenylyl cyclases from Euglena gracilis. Photochem Photobiol Sci 3(6):580–586PubMedCrossRefGoogle Scholar
  160. Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54(3):111–121PubMedCrossRefGoogle Scholar
  161. Kreimer G (1994) Cell biology of phototaxis in flagellate algae. Int Rev Cytol 148:229–309CrossRefGoogle Scholar
  162. Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Eur J Cell Biol 53:101–111PubMedGoogle Scholar
  163. Krinsky NI, Goldsmith TH (1960) The carotenoids of the flagellated alga, Euglena gracilis. Arch Biochem Biophys 91(2):271–279PubMedCrossRefGoogle Scholar
  164. Kronestedt E, Walles B (1975) On the presence of plastids and the eyespot apparatus in a porfiromycin-bleached strain of Euglena gracilis. Protoplasma 84:75–82CrossRefGoogle Scholar
  165. Kühnel-Kratz C, Schäfer J, Häder D-P (1993) Phototaxis in the flagellate, Euglena gracilis, under the effect of microgravity. Microgravity Sci Technol 6:188–193PubMedGoogle Scholar
  166. Leander BS, Witek RP, Farmer MA (2001) Trends in the evolution of the euglenid pellicle. Evolution 55:2215–2235PubMedCrossRefGoogle Scholar
  167. Lebert M (2001) Phototaxis of Euglena gracilis - flavins and pterins. In: Häder D-P, Lebert M (eds) Photomovement, vol 1. Elsevier, Amsterdam, pp 297–341CrossRefGoogle Scholar
  168. Lebert M, Häder D-P (1997) Behavioral mutants of Euglena gracilis: functional and spectroscopic characterization. J Plant Physiol 151:188–195PubMedCrossRefGoogle Scholar
  169. Lebert M, Häder D-P (2000) Photoperception and phototaxis in flagellated algae. Res Adv Photochem Photobiol 1:201–226Google Scholar
  170. Lebert M, Porst M, Häder D-P (1999) Circadian rhythm of gravitaxis in Euglena gracilis. J Plant Physiol 155:344–349PubMedCrossRefGoogle Scholar
  171. Leedale GF (1982) Ultrastructure. In: Buetow DE (ed) The Biology of Euglena. Physiology, vol 3. Academic Press, New York, pp 1–27Google Scholar
  172. Lenci F, Colombetti G, Häder D-P (1983) Role of flavin quenchers and inhibitors in the sensory transduction of the negative phototaxis in the flagellate, Euglena gracilis. Curr Microbiol 9:285–290CrossRefGoogle Scholar
  173. Lenci F, Häder D-P, Colombetti G (1984) Photosensory responses in freely motile microorganisms. In: Colombetti G, Lenci F (eds) Membranes and Sensory Transduction. Plenum Press, New York, pp 199–229CrossRefGoogle Scholar
  174. Lenci F, Ghetti F, Colombetti G, Häder D, Song P-S (2012) Biophysics of photoreceptors and photomovements in microorganisms. Springer Science & Business MediaGoogle Scholar
  175. Lindes DA, Diehn B, Tollin G (1965) Phototaxigraph: recording instrument for determination of rate of response of phototactic microorganisms to light of controlled intensity and wavelength. Rev Sci Instrum 36:1721–1725CrossRefGoogle Scholar
  176. Liu SM, Häder D-P (1994) Isolation and characterization of proteins from the putative photoreceptor for positive phototaxis in the dinoflagellate, Peridinium gatunense Nygaard. Photochem Photobiol 59:86–90CrossRefGoogle Scholar
  177. Lüdtke T, Häder D-P (2007) Molecular genetics of the novel photoreceptor PAC in euglenophytes and bacteria. In: Thangadurai D, Tang W, Pullaiah T (eds) Genes, Genomes & Genomics, vol 2. Vedams eBooks Ltd., New Delhi, pp 189–200Google Scholar
  178. Ma Z, Helbling EW, Li W, Villafañe VE, Gao K (2012) Motility and photosynthetic responses of the green microalga Tetraselmis subcordiformis to visible and UV light levels. J Appl Phycol 24(6):1613–1621CrossRefGoogle Scholar
  179. Mast SO (1911) Light and Behavior of Organisms. Chapman & Hall ltd., LondonCrossRefGoogle Scholar
  180. Mast SO (1914) Orientation in Euglena with some remarks on tropisms. Biol Zent Bl 34:641–664Google Scholar
  181. Masuda S (2013) Light detection and signal transduction in the BLUF photoreceptors. Plant Cell Physiol 54(2):171–179PubMedCrossRefGoogle Scholar
  182. Masuda S, Bauer CE (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613–623PubMedCrossRefGoogle Scholar
  183. Matsunaga S, Hori T, Takahashi T, Kubota M, Watanabe M, Okamoto K, Masuda K, Sugai M (1998) Discovery of signaling effect of UV-B/C light in the extended UV-A/blue-type action spectra for step-down and step-up photophobic responses in the unicellular flagellate alga Euglena gracilis. Protoplasma 201:45–52CrossRefGoogle Scholar
  184. Matsunaga S, Takahashi T, Watanabe M, Sugai M, Hori T (1999) Control by ammonium ion of the change from step-up to step-down photophobically responding cells in the flagellate alga Euglena gracilis. Plant Cell Physiol 40:213–221CrossRefGoogle Scholar
  185. Melkonian M, Meinicke-Liebelt M, Häder D-P (1986) Photokinesis and photophobic responses in the gliding flagellate, Euglena mutabilis. Plant Cell Physiol 27:505–513Google Scholar
  186. Meyer R, Hildebrand E (1988) Phototaxis of Euglena gracilis at low external calcium concentration. J Photochem Photobiol B Biol 2(4):443–453CrossRefGoogle Scholar
  187. Michel H (1990) General and practical aspects of membrane protein crystallization. In: Michel H (ed) Crystallization of Membrane Proteins. CRC Press, Boca Raton, FL, pp 73–89Google Scholar
  188. Mikolajczyk E (1984a) Photophobic responses in Euglenina. 1. Effects of excitation wavelength and external medium on the step-up response of light- and dark-grown Euglena gracilis. Acta Protozool 23:1–10Google Scholar
  189. Mikolajczyk E (1984b) Photophobic responses in Euglenina: 2. Sensitivity to light of the colorless flagellate Astasia longa in low and high viscosity medium. Acta Protozool 23:85–92Google Scholar
  190. Mikolajczyk E, Diehn B (1975) The effect of potassium iodide on photophobic responses in Euglena: evidence for two photoreceptor pigments. Photochem Photobiol 22:269–271PubMedCrossRefGoogle Scholar
  191. Mikolajczyk E, Diehn B (1976) Light-induced body movement of Euglena gracilis coupled to flagellar photophobic responses by mechanical stimulation. J Protozool 23:144–147CrossRefGoogle Scholar
  192. Mikolajczyk E, Diehn B (1978) Morphological alteration in Euglena gracilis induced by treatment with CTAB (Cetyltrimethylammonium bromide) and Triton X-100: correlations with effects on photophobic behavioral responses. J Protozool 25:461–470CrossRefGoogle Scholar
  193. Mikolajczyk E, Diehn B (1979) Mechanosensory responses and mechanoreception in Euglena gracilis. Acta Protozool 18:591–602Google Scholar
  194. Mikolajczyk E, Kuznicki L (1981) Body contraction and ultrastructure of Euglena. Acta Protozool 20:1–24Google Scholar
  195. Murray JM (1981) Control of cell shape by calcium in the Euglenophyceae. J Cell Sci 49:99–117PubMedGoogle Scholar
  196. Nagahama T, Suzuki T, Yoshikawa S, Iseki M (2007) Functional transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory neurons. Neurosci Res 59(1):81–88PubMedCrossRefGoogle Scholar
  197. Nakaoka Y, Tokioka R, Shinozawa T, Fujita J, Usukura J (1991) Photoreception of Paramecium cilia: localization of photosensitivity and binding with anti-frog-rhodopsin IgG. J Cell Sci 99:67–72PubMedGoogle Scholar
  198. Nasir A (2014) Analysis of the gravitaxis signal transduction chain in Euglena gracilis. 40th COSPAR Scientific Assembly. Held 2–10 August 2014, in Moscow, Russia, Abstract F1. 1–18-14. p 2234Google Scholar
  199. Nebenführ A, Schäfer A, Galland P, Senger H, Hertel R (1991) Riboflavin-binding sites associated with flagella of Euglena: a candidate for blue-light photoreceptor? Planta 185:65–71PubMedCrossRefGoogle Scholar
  200. Neumann R, Hertel R (1994) Purification and characterization of a riboflavin-binding protein from flagella of Euglena gracilis. Photochem Photobiol 60:76–83CrossRefGoogle Scholar
  201. Ngô HM, Bouck GB (1998) Heterogeneity and a coiled coil prediction of trypanosomatid-like flagellar rod proteins in Euglena. J Eukaryot Microbiol 45:323–333PubMedCrossRefGoogle Scholar
  202. Nichols KM, Rikmenspoel R (1977) Mg2+-dependent electrical control of flagellar activity in Euglena. J Cell Sci 23:211–225PubMedGoogle Scholar
  203. Nichols KM, Rikmenspoel R (1978) Control of flagellar motion in Chlamydomonas and Euglena by mechanical microinjection of Mg2+ and Ca2+ and by electric current injection. J Cell Sci 29:233–247PubMedGoogle Scholar
  204. Nichols KM, Rikmenspoel R (1980) Flagellar waveform reversal in Euglena. Exp Cell Res 129:377–381PubMedCrossRefGoogle Scholar
  205. Nichols KM, Jacklet A, Rikmenspoel R (1980) Effects of Mg2+ and Ca2+ on photoinduced Euglena flagellar responses. J Cell Biol 84:355–363PubMedCrossRefGoogle Scholar
  206. Ntefidou M, Häder D-P (2005) Photoactivated adenylyl cyclase (PAC) genes in the flagellate Euglena gracilis mutant strains. Photochem Photobiol Sci 4:732–739PubMedCrossRefGoogle Scholar
  207. Ntefidou M, Iseki M, Richter P, Streb C, Lebert M, Watanabe M, Häder D-P (2003a) RNA interference of genes involved in photomovement in Astasia longa and Euglena gracilis mutants. Rec Res Dev Biochem 4:925–930Google Scholar
  208. Ntefidou M, Iseki M, Watanabe M, Lebert M, Häder D-P (2003b) Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis. Plant Physiol 133(4):1517–1521PubMedPubMedCentralCrossRefGoogle Scholar
  209. Ntefidou M, Lüdtke T, Ahmad M, Häder D-P (2006) Heterologous expression of photoactivated adenylyl cyclase (PAC) genes from the flagellate Euglena gracilis in insect cells. Photochem Photobiol 82:1601–1605PubMedCrossRefGoogle Scholar
  210. Nultsch W (1975) Phototaxis and photokinesis. In: Carlile MJ (ed) Primitive Sensory and Communication Systems. Academic Press, New York, pp 29–90Google Scholar
  211. Nultsch W, Häder D-P (1970) Bestimmungen der photo-phobotaktischen Unterschiedsschwelle bei Phormidium uncinatum. Ber Dtsch Bot Ges 83:185–192Google Scholar
  212. Nultsch W, Häder D-P (1979) Photomovement of motile microorganisms. Photochem Photobiol 29:423–437CrossRefGoogle Scholar
  213. Nultsch W, Häder D-P (1988) Photomovement in motile microorganisms—II. Photochem Photobiol 47:837–869PubMedCrossRefGoogle Scholar
  214. Nultsch W, Throm G (1975) Effect of external factors on phototaxis of Chlamydomonas reinhardtii. I. Light. Arch Microbiol 103:175–179PubMedCrossRefGoogle Scholar
  215. Oesterhelt D (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol 8:489–500PubMedCrossRefGoogle Scholar
  216. Omodeo P (1975) Phototactic system morphology: FlorenzGoogle Scholar
  217. Omodeo P (1980) The photoreceptive apparatus of flagellated algal cells: Comparative morphology and some hypothesis on functioning. In: Lenci F, Colombetti G (eds) Photoreception and Sensory Transduction in Aneural Organisms. Plenum Press, New York, pp 127–154CrossRefGoogle Scholar
  218. Omodeo P (2013) Istituto di Biologia Animale de11'Università di Padova 35100 Padova, Italy. Photoreception and Sensory Transduction in Aneural Organisms 33: 127Google Scholar
  219. Osafune T, Schiff JA (1980) Stigma and flagellar swelling in relation to light and carotenoids in Euglena gracilis var. bacillaris. J Ultrastruct Res 73:336–349PubMedCrossRefGoogle Scholar
  220. Ozasa K, Lee J, Song S, Hara M, Maeda M (2013) Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium. Lab Chip 13(20):4033–4039PubMedCrossRefGoogle Scholar
  221. Ozasa K, Lee J, Song S, Maeda M (2014) Transient freezing behavior in photophobic responses of Euglena gracilis investigated in a microfluidic device. Plant Cell Physiol 55(10):1704–1712PubMedCrossRefGoogle Scholar
  222. Peacock MB, Kudela RM (2014) Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. Limnol Oceanogr 59(3):660–673CrossRefGoogle Scholar
  223. Petersen-Mahrt SK, Ekelund NGA, Widell S (1994) Influence of UV-B radiation and nitrogen starvation on daily rhythms in phototaxis and cell shape of Euglena gracilis. Physiol Plant 92:501–505CrossRefGoogle Scholar
  224. Piccinni E, Mammi M (1978) Motor apparatus of Euglena gracilis: ultrastructure of the basal portion of the flagellum and the paraflagellar body. Bollettino di Zoologia 45:405–414CrossRefGoogle Scholar
  225. Poniewozik M (2014) The euglenoid genera Astasia and Menoidium (Euglenozoa) from eastern Poland. Nova Hedwigia 99(1–2):193–212CrossRefGoogle Scholar
  226. Porterfield DM (1997) Orientation of motile unicellular algae to oxygen: Oxytaxis in Euglena. Biol Bull 193:229–230PubMedCrossRefGoogle Scholar
  227. Pringsheim EG (1937) Über das Stigma bei farblosen Flagellaten. Cytologia 1:234–255CrossRefGoogle Scholar
  228. Pringsheim EG (1948) The loss of chromatophores in Euglena gracilis. New Phytol 47:52–87CrossRefGoogle Scholar
  229. Rhiel E, Häder D-P, Wehrmeyer W (1988) Diaphototaxis and gravitaxis in a freshwater Cryptomonas. Plant Cell Physiol 29:755–760PubMedGoogle Scholar
  230. Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2002) Cellular perception and transduction mechanisms of gravity in unicellular organisms. Curr Top Plant Biol 3:143–154Google Scholar
  231. Richter PR, Streb C, Häder D-P (2006) Sign change of phototaxis in Euglena gracilis. Trends Photochem Photobiol 11:57–61Google Scholar
  232. Richter P, Helbling W, Streb C, Häder D-P (2007) PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis. Photochem Photobiol 83:818–823PubMedCrossRefGoogle Scholar
  233. Robenek H, Melkonian M (1983) Structural specialization of the paraflagellar membrane of Euglena. Protoplasma 117:154–157CrossRefGoogle Scholar
  234. Rosati GF, Verni L, Barsanti V, Passarelli V, Gualtieri P (1991) Ultrastructure of the apical zone of Euglena gracilis: photoreceptors and motor apparatus. Electron Microsc Rev 4:319–342PubMedCrossRefGoogle Scholar
  235. Rosati G, Barsanti L, Passarelli V, Giambelluca A, Gualtieri P (1996) Ultrastructure of a novel non-photosynthetic Euglena mutant. Micron 27:367–373CrossRefGoogle Scholar
  236. Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285:41501–41508PubMedPubMedCentralCrossRefGoogle Scholar
  237. Schiff JA, Lyman H, Russel GK (1971) Isolation of mutants from Euglena gracilis. In: San Pietro A (ed) Methods in Enzymology: Photosynthesis. Part A, vol 23. Academic Press, New York, pp 143–162CrossRefGoogle Scholar
  238. Schiff JA, Lyman H, Russel GK (1980) Isolation in Euglena gracilis: An addendum. In: San Pietro A (ed) Methods in Enzymology: Photosynthesis and Nitrogen Fixation. Part C, vol 69. Academic Press, New York, pp 23–29CrossRefGoogle Scholar
  239. Schmidt W, Galland P, Senger H, Furuya M (1990) Microspectrophotometry of Euglena gracilis. Planta 182:375–381PubMedCrossRefGoogle Scholar
  240. Schmidt M, Geßner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18(8):1908–1930PubMedPubMedCentralCrossRefGoogle Scholar
  241. Schröder-Lang S, Schwärzel M, Seifert R, Strünker T, Kateriya S, Looser J, Watanabe M, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4(1):39–42PubMedCrossRefGoogle Scholar
  242. Selbach M, Häder D-P, Kuhlmann HW (1999) Phototaxis in Chlamydodon mnemosyne: determination of illuminance-response curve and the action spectrum. J Photochem Photobiol B Biol 49:35–40CrossRefGoogle Scholar
  243. Shimmen T (1981) Quantitative studies on step-down photophobic response of Euglena in an individual cell. Protoplasma 106:37–48CrossRefGoogle Scholar
  244. Shneyour A, Avron M (1975) Properties of photosynthetic mutants isolated from Euglena gracilis. Plant Physiol 55:137–141PubMedPubMedCentralCrossRefGoogle Scholar
  245. Simons PJ (1981) The role of electricity in plant movements. New Phytol 87:11–37CrossRefGoogle Scholar
  246. Sineshchekov V, Geiß D, Sineshchekov O, Galland P, Senger H (1994a) Fluorometric characterization of pigments associated with isolated flagella of Euglena gracilis: evidence for energy migration. J Photochem Photobiol B Biol 23(2):225–237CrossRefGoogle Scholar
  247. Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694PubMedPubMedCentralCrossRefGoogle Scholar
  248. Sperling PG, Walne PL, Schwarz OJ, Triplett LL (1973) Studies on characterization of pigments from isolated eyespots of Euglenoid flagellates. J Phycol Suppl 9:20Google Scholar
  249. Stallwitz E (1992) Einfluß von Schwermetallionen auf Motilität, Orientierung, Wachstum und Pigmentierung des Flagellaten Euglena gracilis. Diplom, Friedrich-Alexander University Erlangen-Nürnberg, GermanyGoogle Scholar
  250. Stallwitz E, Häder D-P (1993) Motility and phototactic orientation of the flagellate Euglena gracilis impaired by heavy metal ions. J Photochem Photobiol B Biol 18:67–74CrossRefGoogle Scholar
  251. Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gärtner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286:1181–1188PubMedCrossRefGoogle Scholar
  252. Strasburger E (1878) Wirkung des Lichtes und der Wärme auf Schwärmsporen. G. Fischer Verlag, JenaGoogle Scholar
  253. Strother GK, Wolken JJ (1960) Microspectrophotometry of Euglena. Chloroplast and eyespot. Nature 188:601–602CrossRefGoogle Scholar
  254. Sumida S, Lyman H, Nobuhiko K, Osafune T (2007) Mechanism of conversion from heterotrophy to autotrophy in Euglena gracilis. Cytologia 72:447–457CrossRefGoogle Scholar
  255. Suzaki T, Williamson RE (1983) Photoresponse of a colorless euglenoid flagellate, Astasia longa. Plant Sci Lett 32:101–107CrossRefGoogle Scholar
  256. Suzaki T, Williamson RE (1986) Ultrastructure and sliding of pellicular structures during euglenoid movement in Astasia longa Pringsheim (Sarcomastigophora, Euglenoida). J Protozool 33:179–184CrossRefGoogle Scholar
  257. Sznee K, Crouch LI, Jones MR, Dekker JP, Frese RN (2014) Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX. Photosynth Res 119(1–2):243–256PubMedCrossRefGoogle Scholar
  258. Tahedl H, Häder D-P (2001) The use of image analysis in ecotoxicology. In: Häder D-P (ed) Image Analysis: Methods and Applications. CRC Press, Boca Raton, pp 447–458Google Scholar
  259. Takeda J, Nakashima M, Ueno H, Mori T, Iseki M, Watanabe M (2013) Search for pterin-binding protein from Euglena. J Biol Macromol 13(1):13–20Google Scholar
  260. Tamponnet C, Rona JP, Barbotin JN, Calvayrac R (1988) Effects of high external calcium concentrations on etiolated Euglena gracilis Z cells and evidence of an internal membrane potential. Biochim Biophys Acta 943:87–94CrossRefGoogle Scholar
  261. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882PubMedPubMedCentralCrossRefGoogle Scholar
  262. Tollin G (1973) Phototaxis in Euglena. II. Biochemical aspects. In: Pérez-Miravete A (ed) Behaviour of Microorganisms. Plenum Press, New York, pp 91–105CrossRefGoogle Scholar
  263. Tollin G, Robinson MJ (1969) Phototaxis in Euglena. V. Photosupression of phototactic activity by blue light. Photochem Photobiol 9:411–416PubMedCrossRefGoogle Scholar
  264. Toporik H, Carmeli I, Volotsenko I, Molotskii M, Rosenwaks Y, Carmeli C, Nelson N (2012) Large photovoltages generated by plant photosystem I crystals. Adv Mater 24(22):2988–2991PubMedCrossRefGoogle Scholar
  265. Umrath K (1959) Galvanotaxis. Handbuch der Pflanzenphysiologie 17(1):164–167Google Scholar
  266. Vavra J (1962) Instability of the stigma in apochlorotic Euglena gracilis var. bacillaris. J Protozool 9 Suppl:28–29Google Scholar
  267. Verni F, Rosati G, Lenzi P, Barsanti L, Passarelli V, Gualtieri P (1992) Morphological relationship between paraflagellar swelling and paraxial rod in Euglena gracilis. Micron Microsc Acta 23:37–44CrossRefGoogle Scholar
  268. Verworn M (1889) Psychophysiologische Protistenstudien. Gustav Fischer Verlag, Jena, pp 25–130Google Scholar
  269. Votta JJ, Jahn TL (1972) Galvanotaxis of Euglena gracilis. J Protozool 19(Suppl):43Google Scholar
  270. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037PubMedCrossRefGoogle Scholar
  271. Walne PL, Arnott HJ (1967) The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydomonas eugemetos. Planta 77:325–353PubMedCrossRefGoogle Scholar
  272. Walne PL, Lenci F, Mikolajczyk E, Colombetti G (1984) Effect of pronase treatment on step-down and step-up photophobic responses in Euglena gracilis. Cell Biol Int Rep 8:1017–1027PubMedCrossRefGoogle Scholar
  273. Walne PL, Pasarelli V, Barsanti L, Gualtieri P (1998) Rhodopsin: A photopigment for phototaxis in Euglena gracilis. Crit Rev Plant Sci 17:559–574CrossRefGoogle Scholar
  274. Watanabe M, Iseki M (2005) Discovery and characterization of photoactivated adenylyl cyclase (PAC), a novel blue-light receptor flavoprotein, from Euglena gracilis. In: Briggs WR, Spudich JL (eds) Handbook of Photosensory Receptors. Wiley-VCH, Weinheim, pp 447–460CrossRefGoogle Scholar
  275. Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A (2011) PACα–an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116(4):616–625PubMedCrossRefGoogle Scholar
  276. Wenderoth K, Häder D-P (1979) Wavelength dependence of photomovement in desmids. Planta 145:1–5PubMedCrossRefGoogle Scholar
  277. Wolken JJ (1956) A molecular morphology of Euglena gracilis var. bacillaris. J Protozool 3(4):211–221CrossRefGoogle Scholar
  278. Wolken J (1960) Photoreceptors: Comparative studies. In: Allen MB (ed) Comparative Biochemistry of Photoreactive Systems. Academic Press, New York, pp 145–167Google Scholar
  279. Wolken JJ (1977) Euglena: the photoreceptor system for phototaxis. J Protozool 24:518–522PubMedCrossRefGoogle Scholar
  280. Wolken JJ (2012) Euglena: an Experimental Organism for Biochemical and Biophysical Studies. SpringerGoogle Scholar
  281. Wolken JJ, Shin E (1958) Photomotion in Euglena gracilis. I. Photokinesis. II. Phototaxis. J Protozool 5:39–46CrossRefGoogle Scholar
  282. Yoshikawa S, Suzuki T, Watanabe M, Iseki M (2005) Kinetic analysis of the activation of photoactivated adenylyl clclase (PAC), a blue-light receptor for photomovements of Euglena. Photochem Photobiol Sci 4:727–731PubMedCrossRefGoogle Scholar
  283. Zhenan M, Shouyu R (1983) The effect of red light on photokinesis of Euglena gracilis. In: Tseng CK (ed) Proceedings of the joint China-U.S. phycology symposium. Science in China Press, Beijing, pp 311–321Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiolologyFriedrich-Alexander Universität, Erlangen-NürnbergMöhrendorfGermany
  2. 2.Faculty of Pharmaceutical SciencesToho UniversityChibaJapan

Personalised recommendations