Evolutionary Origin of Euglena

  • Bożena ZakryśEmail author
  • Rafał Milanowski
  • Anna Karnkowska
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 979)


Euglenids (Excavata, Discoba, Euglenozoa, Euglenida) is a group of free-living, single-celled flagellates living in the aquatic environments. The uniting and unique morphological feature of euglenids is the presence of a cell covering called the pellicle. The morphology and organization of the pellicle correlate well with the mode of nutrition and cell movement. Euglenids exhibit diverse modes of nutrition, including phagotrophy and photosynthesis. Photosynthetic species (Euglenophyceae) constitute a single subclade within euglenids. Their plastids embedded by three membranes arose as the result of a secondary endosymbiosis between phagotrophic eukaryovorous euglenid and the Pyramimonas-related green alga. Within photosynthetic euglenids three evolutionary lineages can be distinguished. The most basal lineage is formed by one mixotrophic species, Rapaza viridis. Other photosynthetic euglenids are split into two groups: predominantly marine Eutreptiales and freshwater Euglenales. Euglenales are divided into two families: Phacaceae, comprising three monophyletic genera (Discoplastis, Lepocinclis, Phacus) and Euglenaceae with seven monophyletic genera (Euglenaformis, Euglenaria, Colacium, Cryptoglena, Strombomonas, Trachelomonas, Monomorphina) and polyphyletic genus Euglena. For 150 years researchers have been studying Euglena based solely on morphological features what resulted in hundreds of descriptions of new taxa and many artificial intra-generic classification systems. In spite of the progress towards defining Euglena, it still remains polyphyletic and morphologically almost undistinguishable from members of the recently described genus Euglenaria; members of both genera have cells undergoing metaboly (dynamic changes in cell shape), large chloroplasts with pyrenoids and monomorphic paramylon grains. Model organisms Euglena gracilis Klebs, the species of choice for addressing fundamental questions in eukaryotic biochemistry, cell and molecular biology, is a representative of the genus Euglena.


Euglena euglenids Euglenales Euglenophyceae evolution Excavata phylogeny taxonomy 



Cytoplasmic small subunit


Endosymbiotic gene transfer


Heat shock protein 90


Internal transcribed spacer


Laterar gene transfer


Nuclear large subunit


Nuclear small subunit


Photosystem II manganese-stabilizing polypeptide


Ribulose-1,5-bisphosphate carboxylase oxygenase


  1. Adl SM, Simpson AGB, Lane CE et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bennett MS, Triemer RE (2012) A new method for obtaining nuclear gene sequences field samples and taxonomic revisions of the photosynthetic euglenoids Lepocinclis (Euglena) helicoideus and Lepocinclis (Phacus) horridus (Euglenophyta). J Phycol 48:254–260CrossRefPubMedGoogle Scholar
  3. Bennett M, Wiegert KE, Triemer RE (2014) Characterization of new genus Euglenaformis and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia 53:66–73CrossRefGoogle Scholar
  4. Blaxter ML (2004) The promise of a DNA taxonomy. Philos Trans R Soc Lond Ser B Biol Sci 359:669–679CrossRefGoogle Scholar
  5. Breglia SA, Yubuki N, Hoppenrath M, Leander BS (2010) Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospitebacati n.gen. et n.sp.(Symbiontida). BMC Microbiol 10:145CrossRefPubMedPubMedCentralGoogle Scholar
  6. Breglia SA, Yubuki N, Leander BS (2013) Ultrastructure and Molecular Phylogenetic Position of Heteronema scaphurum: A Eukaryovorous Euglenid with a Cytoproct. J Eukaryot Microbiol 60:107–120CrossRefPubMedGoogle Scholar
  7. Brosnan S, Shin W, Kjer KM, Triemer RE (2003) Phylogeny of the photosynthetic euglenophytes inferred from the nuclear SSU and partial LSU rDNA. Int J Syst Evol Microbiol 53:1175–1186CrossRefPubMedGoogle Scholar
  8. Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 6:a016147CrossRefPubMedPubMedCentralGoogle Scholar
  9. Busse I, Preisfeld A (2003) Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of Distigma and Astasia (Euglenozoa). Int J Syst Evol Microbiol 53:617–624CrossRefPubMedGoogle Scholar
  10. Bütschli O (1884) Mastigophora in Bronn’s Klassen u. Ordnungen des Thierreichs, vol 1. Winter’s Verlag, Leipzig, pp 617–1097Google Scholar
  11. Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? Biosystems 14:461–481CrossRefPubMedGoogle Scholar
  12. Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354CrossRefPubMedGoogle Scholar
  13. Cavalier-Smith T (2010) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345CrossRefPubMedGoogle Scholar
  14. Ciugulea I, Nudelman MA, Brosnan S, Triemer RE (2008) Phylogeny of the euglenoid loricate genera Trachelomonas and Strombomonas (Euglenophyta) inferred from nuclear SSU and LSU rDNA. J Phycol 44:406–418CrossRefPubMedGoogle Scholar
  15. Da Cunha AM (1913) Contribuicao para o conhecimento da fauna de Protozoarios do Brasil. Mem Inst Oswaldo Cruz 5:101–122CrossRefGoogle Scholar
  16. Deflandre G (1930) Strombomonas, nouveau genre d'Euglénacées (Trachelomonas EHR. pro parte). Arch Protistenkd 69:551–614Google Scholar
  17. Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177CrossRefPubMedGoogle Scholar
  18. Dujardin F (1841) Historie naturelle des zoophytes infusoires: comprenant la physiologie et la classification de ces animaux et la maniere de les etudier a l’aide du microscope. Libraire encyclopedique de Roret, Paris, p 684Google Scholar
  19. Ehrenberg GC (1830) Beiträge zur Kenntnß der Organisation der Infusorien und ihrer geographischen Verbreitung, brsonders in Sibirien. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, pp 1–88Google Scholar
  20. Ehrenberg CG (1831) Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin (1832)Google Scholar
  21. Ehrenberg CG (1833) Dritter Beitrag zur Erkenntniß großer Organisation in der Richtung des kleinstes Raumes. Physikalishe Abhandlungen Königlichen Akademie der Wissenschaften zu Berlin (1835), pp 145–336Google Scholar
  22. Eyferth B and Schoenichen W (1925) Einfachste Lebensformen des Tier- und Pflanzenreiches. 5. Aufl. Band I. Spaltpflanzen, Geissellinge, Algen, Pilze. Berlin: Lichterfelde, pp vii + 519Google Scholar
  23. Farmer MA (2011) Euglenozoa. Eucaryotic Microbes:311–321Google Scholar
  24. Gibbs SP (1978) The chloroplast of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889CrossRefGoogle Scholar
  25. Gockel G, Hachtel W (2000) Complete Gene Map of the Plastid Genome of the Nonphotosynthetic Euglenoid Flagellate Astasia longa. Protist 151:347–351CrossRefPubMedGoogle Scholar
  26. Gojdics M (1953) The Genus Euglena. The University of Wisconsin Press, Madison, p 253Google Scholar
  27. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23:167–172CrossRefPubMedGoogle Scholar
  28. Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ (2011) Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6(4)Google Scholar
  29. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hollande A (1942) Étude cytologique et biologique de quelques flagellés libres. Arch Zool exp et gén 83:1–268Google Scholar
  32. Hrdá Š, Fousek J, Szabová J, Hampl V, Vlček Č (2012) The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One 7:e33746CrossRefPubMedPubMedCentralGoogle Scholar
  33. Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler T (2014) Ecology in the age of DNA barcoding: The resource, the promise and the challenges ahead. Mol Ecol Resour 14:221–232CrossRefPubMedGoogle Scholar
  34. Kamikawa R, Tanifuji G, Kawachi M, Miyashita H, Hashimoto T, Inagaki Y (2015) Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol Evol 7:1133–1140CrossRefPubMedPubMedCentralGoogle Scholar
  35. Karnkowska A, Bennett MS, Watza D, Kim JI, Zakryś B, Triemer RE (2015) Phylogenetic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. J Eukaryot Microbiol 62:362–373CrossRefPubMedGoogle Scholar
  36. Karnkowska-Ishikawa A, Milanowski R, Kwiatowski J, Zakryś B (2010) Taxonomy of the Phacus oscillans (Euglenaceae) and its close relatives – balancing morphological and molecular features. J Phycol 46:172–182CrossRefGoogle Scholar
  37. Karnkowska-Ishikawa A, Milanowski R, Zakryś B (2011) The species Euglena deses (Euglenaceae) revisited: new morphological and molecular data. J Phycol 47:653–661CrossRefPubMedGoogle Scholar
  38. Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B (2012) Taxonomic revisions of morphologically similar species from two genera: Euglena (E. granulata and E. velata) and Euglenaria (Eu. anabaena, Eu. caudata, Eu. clavata). J Phycol 48:729–739CrossRefPubMedGoogle Scholar
  39. Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B (2013) A redescription of morphologically similar species from the genus Euglena: E. laciniata, E. sanguinea, E. sociabilis, and E. splendens. J Phycol 49:616–626CrossRefPubMedGoogle Scholar
  40. Kim JI, Shin W (2008) Phylogeny of the Euglenales inferred from plastid LSU rDNA sequences. J Phycol 44:994–1000CrossRefPubMedGoogle Scholar
  41. Kim JI, Shin W (2014) Molecular phylogeny and cryptic diversity of the genus Phacus (Phacaceae, Euglenophyceae) and the descriptions of seven new species. J Phycol 50:948–959CrossRefPubMedGoogle Scholar
  42. Kim JI, Shin W, Triemer RE (2010) Multigene analyses of photosynthetic euglenoids and new family Phacaceae (Euglenales). J Phycol 46:1278–1287CrossRefGoogle Scholar
  43. Kim IJ, Shin W, Triemer RE (2012) Phylogenetic reappraisal of the genus Monomorphina (Euglenophyceae) based on molecular and morphological data. J Phycol 49:82–91CrossRefPubMedGoogle Scholar
  44. Kim IJ, Shin W, Triemer RE (2013) Cryptic speciation in the genus Cryptoglena (Euglenaceae) revealed by nuclear and plastid SSU and LSU rDNA gene. J Phycol 49:92–102CrossRefPubMedGoogle Scholar
  45. Kim JI, Linton EW, Shin W (2015) Taxon-rich multigene phylogenty of photosynthetic euglenoids (Euglenohpyceae). Front Ecol Evol 3:98CrossRefGoogle Scholar
  46. Kiss JZ, Vasconcelos AC, Triemer RE (1987) Structure of the euglenoid storage carbohydrate, Paramylon. Am J Bot 74:877–882CrossRefGoogle Scholar
  47. Klebs G (1883) Über die Organisation einiger Flagellaten-Gruppen und ihre Beziehungen zu Algen und Infusorien. Unters Bot Inst Tübingen 1:233–262Google Scholar
  48. Kosmala S, Karnkowska A, Milanowski R, Kwiatowski J, Zakryś B (2005) Phylogenetic and taxonomic position of Lepocinclis fusca comb. nov. (= Euglena fusca) (Euglenaceae): Morphological and molecular justification. J Phycol 41:1258–1267CrossRefGoogle Scholar
  49. Kosmala S, Milanowski R, Brzóska K, Pękala M, Kwiatowski J, Zakryś B (2007a) Phylogeny and systematics of the genus Monomorpina (Euglenaceae) based on morphological and molecular data. J Phycol 43:171–185CrossRefGoogle Scholar
  50. Kosmala S, Bereza M, Milanowski R, Kwiatowski J, Zakryś B (2007b) Morphological and molecular examination of relationships and epitype establishment of Phacus pleuronectes, Phacus orbicularis and Phacus hamelii. J Phycol 43:1071–1082CrossRefGoogle Scholar
  51. Kosmala S, Karnkowska-Ishikawa A, Milanowski R, Kwiatowski J, Zakryś B (2009) Phylogeny and systematics of species from the genus Euglena (Euglenaceae) with axial, stellate chloroplasts based on morphological and molecular data - new taxa, emended diagnoses and epitypifications. J Phycol 45:464–481CrossRefPubMedGoogle Scholar
  52. Lax G, Simpson AGB (2013) Combining molecular data with classical morphology for uncultured phagotrophic Euglenids (Excavata): a single-cell approach. J Eukaryot Microbiol 60(6):615–625CrossRefPubMedGoogle Scholar
  53. Leander BS, Esson HJ, Breglia SA (2007) Macroevolution of complex cytoskeletal systems in euglenids. BioEssays 29:987–1000CrossRefPubMedGoogle Scholar
  54. Leedale GF (1967) Euglenoid flagellates. Prentice-Hall, Englewood Cliffs, N. J. p. 242Google Scholar
  55. Linton EW, Hittner D, Lewandowski C, Auld T, Triemer RE (1999) A molecular study of euglenoid phylogeny using small subunit rDNA. J Eukaryot Microbiol 46:217–223CrossRefPubMedGoogle Scholar
  56. Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W, Bennett MS, Kwiatowski J, Zakryś B, Triemer RE (2010) Reconstructing Euglenoid Evolutionary Relationships using Three Genes: Nuclear SSU and LSU, and Chloroplast SSU rDNA Sequences and the Description of Euglenaria gen. nov. (Euglenophyta). Protist 161:603–619CrossRefPubMedGoogle Scholar
  57. Łukomska-Kowalczyk M, Karnkowska A, Milanowski R, Łach Ł, Zakryś B (2015) Delimiting species in the Phacus longicauda complex (Euglenida) through morphological and molecular analyses. J Phycol 51:1147–1157CrossRefPubMedGoogle Scholar
  58. Łukomska-Kowalczyk M, Karnkowska A, Krupska M, Milanowski R, Zakryś B (2016) DNA barcoding in autotrophic euglenids: evaluation of COI and 18S rDNA. J Phycol 52:951–960CrossRefPubMedGoogle Scholar
  59. Marin B, Palm A, Klingberg MM (2003) Phylogeny and taxonomic revision of plastid-containing Euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145CrossRefPubMedGoogle Scholar
  60. Markunas CM, Triemer RE (2016) Evolutionary history of the enzymes involved in the CalvinBenson cycle in euglenids. J Eukaryot Microbiol 63:326–339CrossRefPubMedGoogle Scholar
  61. Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H (2011) Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol 11:105CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mereschkowsky KS (1877) Etjudy nad prostejsimi zivotnymi severa Rossii. Trudy S-Peterburgsk Obshch Estestvoisp 8:1–299Google Scholar
  63. Milanowski R, Zakryś B, Kwiatowski J (2001) Phylogenetic analysis of chloroplast small-subunit rRNA genes of the genus Euglena Ehrenberg. Int J Syst Evol Microbiol 51:773–781CrossRefPubMedGoogle Scholar
  64. Milanowski R, Kosmala S, Zakryś B, Kwiatowski J (2006) Phylogeny of photosynthetic euglenophytes based on combined chloroplast and cytoplasmic SSU rDNA sequence analysis. J Phycol 42:721–730CrossRefGoogle Scholar
  65. Monfils AK, Triemer RE, Bellairs EF (2011) Charakterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 50:156–169CrossRefGoogle Scholar
  66. Montegut-Felkner AE, Triemer RE (1997) Phylogenetic relationships of selected euglenoid genera based on morphological and molecular data. J Phycol 33:512–519CrossRefGoogle Scholar
  67. Moreira D, López-García P, Rodriguez-Valera F (2001) New insights into the phylogenetic position of diplonemids: G+C content bias, differences of evolutionary rate and a new environmental sequence. Int J Syst Evol Microbiol 51:2211–2219CrossRefPubMedGoogle Scholar
  68. Müllner AN, Angeler DG, Samuel R, Linton EW, Triemer RE (2001) Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int J Syst Evol Microbiol 51:783–791CrossRefPubMedGoogle Scholar
  69. Nudelman MA, Rossi MS, Conforti V, Triemer RE (2003) Phylogeny of Euglenophyceae based on small subunit rDNA sequences: taxonomic implications. J Phycol 39:226–235CrossRefGoogle Scholar
  70. Osafune T, Yokota A, Sumida,S, Hase E (1990) Immunogold Localization of Ribulose-1,5-Bisphosphate Carboxylase with Reference to Pyrenoid Morphology in Chloroplasts of Synchronized Euglena gracilis Cells. Plant Physiol 92(3):802–808Google Scholar
  71. Perty M (1849) Über vertikale Verbreitung mikroskopischer Lebensformen. Lepocinclis n. gen. Mitth Naturforsh Ges Bern 28:17–45Google Scholar
  72. Perty M (1852) Zur Kenntniss kleinster Lebensformen nach Bau, Funktionen. Systematik mit Specialverzeichniss der in der Schweiz beobachteten. Verlag von Jent und Reinert, Bern, p 228Google Scholar
  73. Preisfeld A, Berger S, Busse I, Liller S, Ruppel HG (2000) Phylogenetic analyses of various euglenoid taxa (Euglenozoa) based on 18S rDNA sequence data. J Phycol 36:220–226CrossRefGoogle Scholar
  74. Preisfeld A, Busse I, Klingberg M, Talke S, Ruppel HG (2001) Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasison the Rhabdomonadales (Euglenozoa). Int J Syst Evol Microbiol 51:751–758CrossRefPubMedGoogle Scholar
  75. Pringsheim EG (1956) Contributions towards a monograph of the genus Euglena. Nova Acta Leopoldina 18:1–168Google Scholar
  76. Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62CrossRefPubMedGoogle Scholar
  77. Shin W, Triemer RE (2004) Phylogenetic analysis of the genus Euglena (Euglenophyceae) with particular reference to the species Euglena viridis. J Phycol 40:759–771CrossRefGoogle Scholar
  78. Simpson AGB (1997) The identity and composition of the Euglenozoa. Archiv Protistenk 148:318–328CrossRefGoogle Scholar
  79. Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1779CrossRefPubMedGoogle Scholar
  80. Triemer RE and Zakryś B (2015) Photosynthetic euglenoids In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America: ecology and classification, 2nd edition. Academic Press, Amsterdam, pp. 457–482Google Scholar
  81. Triemer RE, Linton E, Shin W, Nudelman A, Monfils A, Bennett M, Brosnan S (2006) Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis gen. nov. (Euglenophyta). J Phycol 42:731–740CrossRefGoogle Scholar
  82. Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648CrossRefPubMedGoogle Scholar
  83. Yabuki A, Nakayama T, Yubuki N, Hashimoto T, Ishida KI, Inagaki Y (2011) Tsukubamonas globosa n. gen., n. sp., a novel excavate flagellate possibly holding a key for the early evolution in “Discoba”. J Eukaryot Microbiol 58:319–331CrossRefPubMedGoogle Scholar
  84. Yamaguchi A, Yubuki N, Leander BS (2012) Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol 12:29CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yubuki N, Edgcomb VP, Bernhardt JM, Leander BS (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol 9:16CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yubuki N, Simpson AGB, Leander BS (2013) Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa). Eur J Protistol 49:32–39CrossRefPubMedGoogle Scholar
  87. Zakryś B (1986) Contribution to the monograph of Polish members of the genus Euglena Ehr. 1830. Nova Hedwigia 42:491–540Google Scholar
  88. Zakryś B, Milanowski R, Empel J, Borsuk P, Gromadka R, Kwiatowski J (2002) Two different species of Euglena, E. geniculata and E. myxocylindracea (Euglenophyceae), are virtually genetically and morphologically identical. J Phycol 38:1190–1199CrossRefGoogle Scholar
  89. Zakryś B, Empel J, Milanowski R, Gromadka R, Borsuk P, Kędzior M, Kwiatowski J (2004) Genetic variability of Euglena agilis (Euglenophyceae). Acta Soc Bot Pol 73(4):305–309CrossRefGoogle Scholar
  90. Zakryś B, Karnkowska-Ishikawa A, Łukomska-Kowalczyk M, Milanowski R (2013) New photosynthetic euglenoid isolated in Poland: Euglenaria clepsydroides sp. nova (Euglenea). Eur J Phycol 48(3):260–269CrossRefGoogle Scholar
  91. Zimba PV, Rowan M, Triemer R (2004) Identification of euglenoid algae that produce ichthyotoxin (s). J Fish Dis 27:115–117CrossRefPubMedGoogle Scholar
  92. Zimba PV, Moeller PD, Beauchesne K, Lane HE, Triemer RE (2010) Identification of euglenophycin – A toxin found in certain euglenoids. Toxicon 55:100–104CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bożena Zakryś
    • 1
    Email author
  • Rafał Milanowski
    • 1
  • Anna Karnkowska
    • 1
  1. 1.Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland

Personalised recommendations