Skip to main content

Towards Robust Sustainable System Design: An Engineering Inspired Approach

  • Conference paper
  • First Online:

Abstract

An engineering inspired method called multi-pole system analysis (MPSA) is presented and applied to an innovative wind-energy converter. The method offers a consecutive and structured guideline to determine optimal system designs in the tense interrelations of sustainability requirements, e.g. energetic efficiency, economic profitability and environmental quality. The method consists of the four steps of (1) system synthesis, (2) system analysis under uncertainty, (3) stochastic system optimization and (4) sensitivity analysis and addresses the involved uncertainty due to lack of information in the early stage of system design. As the results indicate, only a simultaneous consideration of the involved domains can truly lead to an optimal system design. By incorporating uncertainty aspects within the second step of the method and performing stochastic optimization, the disadvantage of missing robustness of previous deterministic optimal systems is overcome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

The nomenclature is shown in the dimension of length (L), mass (M), time (T) and currency (C).:

The nomenclature is shown in the dimension of length (L), mass (M), time (T) and currency (C).

References

  1. Salomon, R.E.: Process of converting wind energy to elemental hydrogen and apparatus therefor. US Patent 4,335,093, Temple University; 1982

    Google Scholar 

  2. Meller, M.: Wind-powered linear motion hydrogen production systems. US Patent 7,146,918 B2, 2006

    Google Scholar 

  3. Holder, K.L.: Einrichtung zum Umwandeln von Windenergie über dem offenen Wasser, insbesondere Ozean, in elektrische Energie. DE 10 2007 057 267 A1, 2008

    Google Scholar 

  4. Gizara, A.R.: Turbine-integrated hydrofoil. US Patent 7,298,056 B2, Integrated Power Technology Corporation, 2007

    Google Scholar 

  5. Platzer, M.F., Lennie, M., Vogt, D.M.: Analysis of the Conversion of Ocean Wind Power into Hydrogen. Proceedings of the World Renewable Energy Congress, Murdoch (2013)

    Google Scholar 

  6. Platzer, M.F., Sanz, W., Jericha, H.: Renewable power via energy ship and graz cycle. In: ISROMAC-15. Honolulu, USA, 2014

    Google Scholar 

  7. Platzer, M.F., Sarigul-Klijn, N.: A novel approach to extract power from free-flowing water and high altitude jet streams. In: ASME 2009 3rd International Conference on Energy Sustainability, San Francisco, California, USA, 2009, pp. 493–499

    Google Scholar 

  8. Platzer, M.F., Sarigul-Klijn, N.: A new oscillating-foil power generator for sailingship-based renewable energy generation. In: ASME 2010 4th International Conference on Energy Sustainability, American Society of Mechanical Engineers, 2010, pp. 909–916

    Google Scholar 

  9. Platzer, M.F., Sarigul-Klijn, N., Young, J., Ashraf, M.A., Lai, J.C.S.: Renewable hydrogen production using sailing ships. J. Energy Resour. Technol. 136, 021203 (2014)

    Article  Google Scholar 

  10. Kim, J.: Electric power generation system using hydro turbine tracted by paraglider. US Patent 2010/0001534 A1, 2010

    Google Scholar 

  11. Kim, J., Park, C.: Economy of hydrogen production by Parafoil-pulled ships. J. Energy Power Sour. 1, 9–16 (2014)

    Google Scholar 

  12. Kim, J., Park, C.: Wind power generation with a parawing on ships, a proposal. Energy. 35, 1425–1432 (2010)

    Article  Google Scholar 

  13. Holl, M., Platzer, M., Pelz, P.F.: Techno-economical system optimisation and its application to an energy system. In: Energy-Science and Technologie EST, p. 406. KIT, Karlsruhe (2015)

    Google Scholar 

  14. Holl, M., Platzer, M., Pelz, P.F.: Optimal energy systems design applied to an innovative ocean-wind energy converter. In: 7th International Conference on Sustainable Development and Planning, pp. 547–557. WIT Press, Istanbul (2015)

    Google Scholar 

  15. Pelz, P.F., Holl, M., Platzer, M.: Analytical method towards an optimal energetic and economical wind-energy converter. Energy. 94, 344–351 (2016)

    Article  Google Scholar 

  16. Holl, M., Pelz, P.F.: Multi-pole system analysis (MPSA)—A systematic method towards techno-economic optimal system design. Appl. Energy. 169, 937–949 (2016)

    Article  Google Scholar 

  17. Buchholz, P.: Modellgestützte Analyse und Optimierung. Technische Universität Dortmund, Dortmund (2015)

    Google Scholar 

  18. Carnot, S.: Betrachtungen über die bewegende Kraft des Feuers. Wilhelm Engelmann, Leipzig (1892)

    MATH  Google Scholar 

  19. Betz, A.: Das maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwesen. 26, 307–309 (1920)

    Google Scholar 

  20. Pelz, P.F.: Upper limit for hydropower in an open-channel flow. J. Hydraul. Eng. 137, 1536–1542 (2011)

    Article  Google Scholar 

  21. Aven, T.: Some reflections on uncertainty analysis and management. Reliab. Eng. Syst. Saf. 95, 195–201 (2010)

    Article  Google Scholar 

  22. Aven, T., Zio, E.: Some considerations on the treatment of uncertainties in risk assessment for practical decision making. Reliab. Eng. Syst. Saf. 96, 64–74 (2011)

    Article  Google Scholar 

  23. Devooght, J.: Model uncertainty and model inaccuracy. Reliab. Eng. Syst. Saf. 59, 171–185 (1998)

    Article  Google Scholar 

  24. Hoffman, F.O., Hammonds, J.S.: Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal. 14, 707–712 (1994)

    Article  Google Scholar 

  25. Nilsen, T., Aven, T.: Models and model uncertainty in the context of risk analysis. Reliab. Eng. Syst. Saf. 79, 309–317 (2003)

    Article  Google Scholar 

  26. Zio, E., Pedroni, N.: Literature review of methods for representing uncertainty. In: FonCSI, 2013

    Google Scholar 

  27. Knight, F.H.: Risk, Uncertainty and Profit. Hart, Schaffner and Marx, New York (1921)

    Google Scholar 

  28. von Helmholtz, H.L.F.: Über die Erhaltung der Kraft, eine physikalische Abhandlung. Reimer, Berlin (1847)

    Google Scholar 

  29. Tietjens, O.K.G., Prandtl, L.: Applied Hydro-and Aeromechanics: Based on Lectures of L. Prandtl. Courier Corporation, New York (1957)

    MATH  Google Scholar 

  30. Sachs, L., Hedderich, J.: Angewandte Statistik: Methodensammlung mit R. Springer, Berlin (2009)

    MATH  Google Scholar 

  31. Brockhoff, K.: Geschichte der Betriebswirtschaftslehre-Kommentierte Meilensteine und Originaltexte. Wiesbaden, Gabler Verlag (2000)

    Google Scholar 

  32. Schneider, D.: Betriebswirtschaftslehre, Band 4: Geschichte und Methoden der Wirtschaftswissenschaft. München, Wien, Oldenburg Verlag (2001)

    Google Scholar 

  33. Stevin, S.: Tafelen Van Interest, Midtgaders de Constructie der Selver. Christoffel Plantijn, Antwerp (1582)

    Google Scholar 

  34. Leibniz, G.W.: Meditatio juridico-mathematica de interusurio simplice. In: Knobloch, E., Graf von der Schulenberg, J.-M. (eds.) Hauptschriften zur Versicherungs-und Finanzmathematik. Oldenburg Akademieverlag, Berlin (2000)

    Google Scholar 

  35. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1, 197–206 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kall, P., Wallace, S.W.: Stochastic Programming. Springer, New York (1994)

    MATH  Google Scholar 

  37. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer Science & Business Media, New York (2011)

    Book  MATH  Google Scholar 

  38. Wets, R.J.-B.: Chapter VIII: Stochastic programming. Handbooks Oper. Res. Manag. Sci. 1, 573–629 (1989)

    Article  Google Scholar 

  39. Graf, M.: Financial Risk Management: State-of-the-Art [Bachelorthesis], 2005

    Google Scholar 

  40. Hildebrandt, P., Knoke, T.: Investment decisions under uncertainty—a methodological review on forest science studies. Forest Policy Econ. 13, 1–15 (2011)

    Article  Google Scholar 

  41. Kruschwitz, L., Husmann, S.: Finanzierung und Investition. Walter de Gruyter, Berlin (2012)

    Book  Google Scholar 

  42. Poggensee, K.: Investitionsrechnung. Wiesbaden, Gabler (2008)

    Google Scholar 

  43. Trautmann, S.: Investitionen: Bewertung, Auswahl und Risikomanagement. Springer-Verlag, Berlin (2007)

    Google Scholar 

  44. Bernoulli D. Specimen Theoriae novae de Mensure Sortis. Cementer Academia Scientiarum Imperalis Petropolitanae. 1738:175–92.

    Google Scholar 

  45. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ (1944)

    MATH  Google Scholar 

  46. Baucells, M., Borgonovo, E.: Invariant probabilistic sensitivity analysis. Manag. Sci. 59, 2536–2549 (2013)

    Article  Google Scholar 

  47. Bawa, V.S.: Optimal rules for ordering uncertain prospects. J. Financ. Econ. 2, 95–121 (1975)

    Article  Google Scholar 

  48. Jean, W.H.: Comparison of moment and stochastic dominance ranking methods. J. Financ. Quant. Anal. 10, 151–161 (1975)

    Article  Google Scholar 

  49. Fishburn, P.C.: Mean-risk analysis with risk associated with below-target returns. Am. Econ. Rev. 67, 116–126 (1977)

    Google Scholar 

  50. Borgonovo, E., Plischke, E.: Sensitivity analysis: a review of recent advances. Eur. J. Oper. Res. 248, 869–887 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Campolongo, F., Saltelli, A.: Sensitivity analysis of an environmental model: an application of different analysis methods. Reliab. Eng. Syst. Saf. 57, 49–69 (1997)

    Article  Google Scholar 

  52. Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  53. Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., et al.: Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ. Model. Softw. 79, 214–232 (2016)

    Article  Google Scholar 

  54. Borgonovo, E., Castaings, W., Tarantola, S.: Moment independent importance measures: new results and analytical test cases. Risk Anal. 31, 404–428 (2011)

    Article  Google Scholar 

  55. Liu, H., Chen, W., Sudjianto, A.: Relative entropy based method for probabilistic sensitivity analysis in engineering design. J. Mech. Des. 128, 326–336 (2006)

    Article  Google Scholar 

  56. Holl, M., Janke, T., Pelz, P.F., Platzer, M.: Sensitivity analysis of a techno-economic optimal wind-energy converter. In: 2nd International Conference on Next Generation Wind Energy, Lund, Sweden, 2016

    Google Scholar 

  57. Borgonovo, E.: A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 92, 771–784 (2007)

    Article  Google Scholar 

  58. Pianosi, F., Sarrazin, F., Wagener, T.: A Matlab toolbox for global sensitivity analysis. Environ. Model. Softw. 70, 80–85 (2015)

    Article  Google Scholar 

  59. Pianosi, F., Sarrazin, F., Wagener, T.: SAFE Toolbox, 2016

    Google Scholar 

  60. Pianosi, F., Wagener, T.: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 67, 1–11 (2015)

    Article  Google Scholar 

  61. Kolmogorov, A.N.: Sulla determinazione empirica delle leggi di probabilita. Giorn Ist. Ital. Attuari. 4, 83–91 (1933)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for the financial support in the framework of the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Holl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Holl, M., Pelz, P.F. (2017). Towards Robust Sustainable System Design: An Engineering Inspired Approach. In: Barthorpe, R., Platz, R., Lopez, I., Moaveni, B., Papadimitriou, C. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54858-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54858-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54857-9

  • Online ISBN: 978-3-319-54858-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics