Skip to main content

Development of Microsystems Multi Physics Investigation Methods

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 24))

Abstract

The theoretical and experimental methods for the investigation of microsystems multi physic processes are presented. The FEM method for the analysis of MEMS in digital environment in combination with experimental data from holographic interferometry is developed. Numerical–experimental method for evaluation of geometrical parameters and their usage for characterization of microstructures is presented. In order to optimise hot imprint method in polycarbonate, an elasto-plastic material model for simulation of microstructures hot imprint method is developed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brown GC, Pryputniewicz RJ (1998) Holographic microscope for measuring displacements of vibrating microbeams using time-average electro-optic holography. Opt Eng 37:1398–1405

    Google Scholar 

  2. Pryputniewicz RJ, Furlong C, Brown GC, Pryputniewicz EJ (2001) Optical methodology for static and dynamic measurements of nanodisplacements. In: Proceedings of international congress on experimental and applied mechanics in emerging technologies, Portland, OR, pp 826–831

    Google Scholar 

  3. Pryputniewicz RJ, Stetson KA (1989) Measurement of vibration patterns using electro-optic holography. In: Proceedings of SPIE, vol 1162

    Google Scholar 

  4. Ostasevicius V, Palevicius A, Daugela A, Ragulskis M, Palevicius R (2004) Holographic imaging technique for characterization of MEMS switch dynamics. In: Varadan VK (ed) Proceedings of SPIE, vol 5389. Smart structures and materials 2004: smart electronics, MEMS, BioMEMS, and nanotechnology, pp 73–84

    Google Scholar 

  5. Ragulskis M, Palevicius A, Ragulskis L (2003) Plotting holographic interferograms for visualization of dynamic results from finite-element calculations. Int J Numer Meth Eng 56:1647–1659

    Article  MATH  Google Scholar 

  6. Joroslavskij L (1987) Numerical processing of signals in optics and holography. 1987 M.: Radio i svjaz, 295 p

    Google Scholar 

  7. Palevičius A, Ragulskis M, Palevičius R (1998) Wave mechanical systems (theory, holographic interference). Caritas, Kaunas, 150 p

    Google Scholar 

  8. Palevičius A, Ragulskis M (1996) Holographic interference method for investigation of wave transport system. In: 2nd international conference on vibration measurement by laser techniques. Ancona, Italy, 1996, pp 21–27

    Google Scholar 

  9. Palevičius A, Ragulskis M (1998) The system of wave transportation and their holographic research. In: 3rd international conference on vibration measurement by laser techniques. Ancona, Italy, 1998, pp 125–128

    Google Scholar 

  10. Palevičius A, Ragulskis M, Tomasini E (1999) Vibramotor optimisation using laser holographic interferometry. In: Proceedings of 17th international modal analysis conference. Kissimme, USA SAE, 1999, pp 1012–1016

    Google Scholar 

  11. Gale MT (1997) Replication technology for holograms and diffractive optical elements. J Imag Sci Technol 41(3)

    Google Scholar 

  12. Lee B, Kwon M, Yoon J, Shin S (2000) Fabrication of polymeric large-core waveguides for optical interconnects using a rubber molding process. IEEE Photon Technol Lett 12:62–64

    Article  Google Scholar 

  13. Siebel U, Hauffe R, Petermann K (2000) Crosstalk-enhanced polymer digital optical switch based on a W-shape. IEEE Photon Technol Lett 12:40–41

    Article  Google Scholar 

  14. Oh M, Lee M, Lee H (1999) Polymeric waveguide polarization splitter with a buried birefringent polymer. IEEE Photon Technol Lett 11:1144–1146

    Article  Google Scholar 

  15. Stutzmann N, Tervoort T, Bastiaansen C, Feldman K, Smith P (2000) Solid-state replication of relief structures in semicrystalline polymers. Adv Mater 12:557–562

    Article  Google Scholar 

  16. Margelevičius J, Grigaliūnas V, Juknevičius V (1997) Forming specialities of micro-optical surfaces. In: Materials science (Medziagotyra), ISSN 1392-1320, Kaunas: Technologija 1(4):35–37

    Google Scholar 

  17. Meeder M, Zehnder R, Debruyne S, Faehnle OW (2003) In-process surface measurement of replication material during UV curing. FISBA Optik AG, Rorschacher Str. 268, 9016 St. Gallen, Switzerland

    Google Scholar 

  18. Schulz H, Scheer H-C, Hoffmann T, Sotomayor Torres CM, Pfeiffer K, Bleidiessel G, Grutzner G, Cardinaud C, Gaboriau F, Peignon M-C, Ahopelto J, Heidari B (2000) New polymer materials for nanoimprinting. J Vac Sci Technol B 18:1861–1865

    Google Scholar 

  19. Guobiene A, Cyziute B, Tamulevicius S, Grigaliunas V (2002) The evaluation of diffraction efficiency of optical periodic structures. Mater Sci (Medziagotyra) 8(3):235–239

    Google Scholar 

  20. van Renesse RL (1998) Optical document security, 2nd edn. TNO Institute of Applied Physics Stieljesweg 1, Deft, The Netherlands. ISBN 0-89006-982-4, pp 29–55

    Google Scholar 

  21. Loewen EG, Popov E (1997) Diffraction gratings and applications. Marcel Dekker Inc., New York

    Google Scholar 

  22. Ferstl M (1998) OSA Tech Dig Ser 10:167–169

    Google Scholar 

  23. Martin C, Ressier L, Peyrade JP (2003) Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography. Phys E 17:523–525

    Article  Google Scholar 

  24. Baraldi LG (1994) Heißpragen in Polymeren fur die Herstellungintegriert-optischerSystemkomponenten. PhD Thesis, ETH, Zurich

    Google Scholar 

  25. Stoyanov S et al (2011) Modelling and optimization study on the fabrication of nano-structures using imprint forming process. Eng Comput 28(1):93–111

    Article  MATH  Google Scholar 

  26. Juang YJ (2001) Polymer processing and rheological analysis near the glass transition temperature. Dissertation, 230 p

    Google Scholar 

  27. He Y, Fu JZ, Chen ZC (2007) Research on optimization of the hot embossing process. J Micromech Microeng 17:2420–2425

    Article  Google Scholar 

  28. Lan S et al (2009) Experimental and numerical study on the viscoelastic property of polycarbonate near glass transition temperature for micro thermal imprint process. J Mater Des 30:3879–3884

    Article  Google Scholar 

  29. Song Z et al (2008) Simulation study on stress and deformation of polymeric patterns during the demolding process in thermal imprint lithography. J Vac Sci Technol B 26(2):598–605

    Article  Google Scholar 

  30. He Y, Fu JZ, Chen ZC (2008) Optimization of control parameters in micro hot embossing. Microsyst Technol 14:325–329

    Article  Google Scholar 

  31. Liu C et al (2010) Deformation behavior of solid polymer during hot embossing process. Microelectron Eng 87:200–207

    Article  Google Scholar 

  32. Jeong JH et al (2002) Flow behavior at the embossing stage of nanoimprint lithography. Fibers Polym 3(3):113–119

    Article  Google Scholar 

  33. Yao DG, Vinayshankar LV, Byung K (2005) Study on sequeezing flow during nonisothermal embossing of polymer microstructure. J Polym Eng Sci 45:652–660

    Article  Google Scholar 

  34. Worgull M et al (2010) Hot embossing of high performance polymers. Design test integration and packaging of MEMS/MOEMS (DTIP), 5–7 May 2010, Seville, Spain, pp 272–277

    Google Scholar 

  35. Smidt LR, Carley JF (1975) Biaxial stretching of heat softened sheets: experiments and results. Polym Eng Sci 15(1):51–62

    Article  Google Scholar 

  36. Day AJ et al (1993) Finite element modelling of polymer deformation process. In: ABAQUS user’s conference, 1993, pp 151–163

    Google Scholar 

  37. Krishnaswamy P, Tuttle ME, Emery AF (1990) Finite element modelling of crack tip behavior in viscoelastic materials. Part 1: linear behavior. Int J Numer Meth Eng 30:371–387

    Google Scholar 

  38. Lin CR, Chen RH, Hung C (2002) The characterisation and finite element analysis of a polymer under hot pressing. Int J Adv Manuf Technol 20:230–235

    Article  Google Scholar 

  39. Nicoli MA (2007) A thermo-mechanical finite element deformation theory or plasticity for amorphous polymers: application to micro-hot-embossing of poly(methyl methacrylate). PhD thesis, MIT

    Google Scholar 

  40. Kiew CM et al (2009) Finite element analysis of PMMA pattern formation during hot embossing process. In: IEEE/ASME international conference on advanced intelligent mechatronics, 14–19 July 2009. Suntec Convention and Exhibition Center, Singapore, p WB2.6

    Google Scholar 

  41. Kim NK, Kim KW, Sin HC (2008) Finite element analysis of low temperature nanoimprint lithography using a viscoelastic model. Microelectron Eng 85:1858–1865

    Article  Google Scholar 

  42. Jin P et al (2009) Simulation and experimental study on recovery of polymer during hot embossing. Jpn Soc Appl Phys: 06FH10-1-06FH10-4

    Google Scholar 

  43. Hirai Y et al (2001) Study of the resist deformation in nanoimprint lithography. J Vac Sci Technol B 19(6):314–319

    Article  Google Scholar 

  44. Young WB (2005) Analysis of the nanoimprint lithography with a viscous model. Microelectron Eng 77:405–411

    Article  Google Scholar 

  45. Dupaix RB, Cash W (2009) Finite element modeling of polymer hot embossing using a Glass-Rubber finite strain constitutive model. Polym Eng Sci 49(3):531–543

    Article  Google Scholar 

  46. Asaro RJ, Lubarda VA (2006) Mechanics of solids and materials. Cambridge University Press, New York, p 860

    Book  MATH  Google Scholar 

  47. Haslach HW, Armstrong RW (2004) Deformables bodies and their material behaviour. Wiley, New York, p 560

    Google Scholar 

  48. Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, Cambridge, p 584

    Google Scholar 

  49. De Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, New York, 791 p

    Google Scholar 

  50. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Google Scholar 

  51. Jirasek M, Bažant ZP (2002) Inelastic analysis of structures. Wiley, New York, 734 p

    Google Scholar 

  52. Rivera A (2007) Non-linear finite element method simulation and modeling of the cold and hot rolling process. PhD thesis

    Google Scholar 

  53. Crisfield MA (2001) Non-linear finite element analysis of solids and structures, vol 1. Wiley, Chichester, 345 p

    Google Scholar 

  54. Pennec F et al (2007) Verification of contact modeling with Comsol Multiphysics software. Paper presented at: EUROSIM: Federation of European Simulation Societies, Slovenia

    Google Scholar 

  55. Wriggers P (2006) Computational contact mechanics. Springer, Berlin, 518 p

    Google Scholar 

  56. Show MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity, 1st edn. Wiley, Hoboken, 316 p

    Google Scholar 

  57. Reiter J, Pierer R (2005) Thermo-mechanical simulation of a laboratory test to determine mechanical properties of steel near the solidus temperature. In: Excerpt from the proceedings of the COMSOL Multiphysics user’s conference. Frankfurt

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vytautas Ostasevicius .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ostasevicius, V., Janusas, G., Palevicius, A., Gaidys, R., Jurenas, V. (2017). Development of Microsystems Multi Physics Investigation Methods. In: Biomechanical Microsystems . Lecture Notes in Computational Vision and Biomechanics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-54849-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54849-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54848-7

  • Online ISBN: 978-3-319-54849-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics