Skip to main content

Ligand Binding Assays in the Regulated Bioanalytical Laboratory

Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS,volume 26)

Abstract

This chapter covers the use of ligand binding assays (LBAs) in a regulated bioanalysis environment. The various platforms employed in the analysis of protein therapeutics are varied and selection of the appropriate platform for a particular application is highlighted. The suitability, procurement and implementation of critical reagents are of major importance for LBAs and considerations for their careful selection and use are provided. In addition, various strategies, including Design of Experiments (DoE) are discussed as a means of optimizing assay conditions to produce robust and rugged assays during method development. The key parameters for the validation of LBAs are discussed in depth as well as many considerations, including automation, that can be employed when analyzing study samples in a production environment.

Keywords

  • Bioanalytical
  • Ligand binding assays
  • Automation
  • Bioanalytical validation
  • Design of experiments (DoE)
  • Ligand binding reagents
  • LBA
  • Immunoassay platforms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-54802-9_9
  • Chapter length: 52 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-54802-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9
Fig. 9.10
Fig. 9.11

References

  1. Smolec J, DeSilva B, Smith W, Weiner R, Kelly M, Lee B, et al. Bioanalytical method validation for macromolecules in support of pharmacokinetic studies. Pharm Res. 2005;22(9):1425–31.

    CrossRef  CAS  PubMed  Google Scholar 

  2. Findlay JW, Smith WC, Lee JW, Nordblom GD, Das I, DeSilva BS, et al. Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biomed Anal. 2000;21(6):1249–73.

    CrossRef  CAS  PubMed  Google Scholar 

  3. DeSilva B, Smith W, Weiner R, Kelley M, Smolec J, Lee B, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res. 2003;20(11):1885–900.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Munos B. 2015 New drug approvals hit 66-year high! Forbes. 2016.

    Google Scholar 

  5. Yang J, Quarmby V. Free versus total ligand-binding assays: points to consider in biotherapeutic drug development. Bioanalysis. 2011;3(11):1163–5.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Williams L, Sank M, Chimalakonda A, Ni Y, Saewert M, DeSilva B, et al. Development and characterization of a free therapeutic ligand binding assay with assistance from kinetics modeling. J Immunol Methods. 2015;419:18–24.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT, et al. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13(1):99–110.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bowsher RR, Lynch RA, Brown-Augsburger P, Santa PF, Legan WE, Woodworth JR, et al. Sensitive RIA for the specific determination of insulin lispro. Clin Chem. 1999;45(1):104–10.

    CAS  PubMed  Google Scholar 

  9. Mora J, Given Chunyk A, Dysinger M, Purushothama S, Ricks C, Osterlund K, et al. Next generation ligand binding assays-review of emerging technologies’ capabilities to enhance throughput and multiplexing. AAPS J. 2014;16(6):1175–84.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fraser S, Cameron M, O’Connor E, Schwickart M, Tanen M, Ware M. Next generation ligand binding assays-review of emerging real-time measurement technologies. AAPS J. 2014;16(5):914–24.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischer SK, Joyce A, Spengler M, Yang TY, Zhuang Y, Fjording MS, et al. Emerging technologies to increase ligand binding assay sensitivity. AAPS J. 2015;17(1):93–101.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Dong H, Mora JR, Brockus C, Chilewski SD, Dodge R, Merrifield C, et al. Development of a generic anti-PEG antibody assay using bioscale’s acoustic membrane microparticle technology. AAPS J. 2015;17(6):1511–6.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chilewski SD, Dickerson WM, Mora JR, Saab A, Alderman EM. Evaluation of acoustic membrane microparticle (AMMP) technology for a sensitive ligand binding assay to support pharmacokinetic determinations of a biotherapeutic. AAPS J. 2014;16(6):1366–71.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu X, Ji QC, Jemal M, Gleason C, Shen JX, Stouffer B, et al. Fit-for-purpose bioanalytical cross-validation for LC-MS/MS assays in clinical studies. Bioanalysis. 2013;5(1):83–90.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Thway TM, Ma M, Lee J, Sloey B, Yu S, Wang YM, et al. Experimental and statistical approaches in method cross-validation to support pharmacokinetic decisions. J Pharm Biomed Anal. 2009;49(3):613–8.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Gong C, Zeng J, Akinsanya B, Jiang H, Mora J, Chilewski S, et al. Development and validation of an LC-MS/MS assay for the quantitation of a PEGylated anti-CD28 domain antibody in human serum: overcoming interference from antidrug antibodies and soluble target. Bioanalysis. 2014;6(18):2371–83.

    CrossRef  CAS  PubMed  Google Scholar 

  17. O’Hara DM, Theobald V, Egan AC, Usansky J, Krishna M, TerWee J, et al. Ligand binding assays in the 21st century laboratory: recommendations for characterization and supply of critical reagents. AAPS J. 2012;14(2):316–28.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Haulenbeek J, Piccoli SP. Conjugated critical reagent characterization for ligand-binding assays: using MALDI-TOF-MS as an orthogonal tool to assess assay performance. Bioanalysis. 2014;6(7):983–92.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Geist BJ, Egan AC, Yang TY, Dong Y, Shankar G. Characterization of critical reagents in ligand-binding assays: enabling robust bioanalytical methods and lifecycle management. Bioanalysis. 2013;5(2):227–44.

    CrossRef  CAS  PubMed  Google Scholar 

  20. King LE, Farley E, Imazato M, Keefe J, Khan M, Ma M, et al. Ligand binding assay critical reagents and their stability: recommendations and best practices from the Global Bioanalysis Consortium harmonization team. AAPS J. 2014;16(3):504–15.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duo J. Comparison of different ligand binding assay platforms for antibody screening against PEGylated therapeutic proteins 2013.

    Google Scholar 

  22. Jia Duo AK, David-brown D, Luo L, Haulenbeek J, Liu R, Hamuro L, Zhang Y. Surface plasmon resonance as a tool for reagent screening and characterization to enhance bioanalytical support for biotherapeutic programs 2015.

    Google Scholar 

  23. Kozhich A. High throughput screening and pairing of hybridomas at supernatant stage on the gyros. North American Gyros Seminar 2015.

    Google Scholar 

  24. Liu RHJ, Krishna M, Duo J, Zhang Y. Anti-Idiotypic Antibody Characterization to support BMS-986090 pharmacokinetics assay 2014.

    Google Scholar 

  25. Myler HA, Phillips KR, Dong H, Tabler E, Shaikh M, Coats V, et al. Validation and life-cycle management of a quantitative ligand-binding assay for the measurement of Nulojix((R)), a CTLA-4-Fc fusion protein, in renal and liver transplant patients. Bioanalysis. 2012;4(10):1215–26.

    CrossRef  CAS  PubMed  Google Scholar 

  26. Kaplan IV, Levinson SS. When is a heterophile antibody not a heterophile antibody? When it is an antibody against a specific immunogen. Clin Chem. 1999;45(5):616–8.

    CAS  PubMed  Google Scholar 

  27. Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Jones BR, Schultz GA, Eckstein JA, Ackermann BL. Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules. Bioanalysis. 2012;4(19):2343–56.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Ray CA, Patel V, Shih J, Macaraeg C, Wu Y, Thway T, et al. Application of multi-factorial design of experiments to successfully optimize immunoassays for robust measurements of therapeutic proteins. J Pharm Biomed Anal. 2009;49(2):311–8.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Eriksson EJL, Kettaneh-Wold N, Wikstrom C, Wold S. Design of experiments: principles and applications. Sweden: Umetrics AB; 2008.

    Google Scholar 

  31. Montgomery DC. Design and analysis of experiments. 3rd ed. New York: Wiley; 1991.

    Google Scholar 

  32. Findlay JW, Dillard RF. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 2007;9(2):E260–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Booth B, Arnold ME, DeSilva B, Amaravadi L, Dudal S, Fluhler E, et al. Workshop report: Crystal City V–quantitative bioanalytical method validation and implementation: the 2013 revised FDA guidance. AAPS J. 2015;17(2):277–88.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Sailstad JM, Amaravadi L, Clements-Egan A, Gorovits B, Myler HA, Pillutla RC, et al. A white paper–consensus and recommendations of a global harmonization team on assessing the impact of immunogenicity on pharmacokinetic measurements. AAPS J. 2014;16(3):488–98.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kelley M, Ahene AB, Gorovits B, Kamerud J, King LE, McIntosh T, et al. Theoretical considerations and practical approaches to address the effect of anti-drug antibody (ADA) on quantification of biotherapeutics in circulation. AAPS J. 2013;15(3):646–58.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tate J, Ward G. Interferences in immunoassay. Clin Biochem Rev. 2004;25(2):105–20.

    PubMed  PubMed Central  Google Scholar 

  37. DeForge LE, Loyet KM, Delarosa D, Chinn J, Zamanian F, Chuntharapai A, et al. Evaluation of heterophilic antibody blocking agents in reducing false positive interference in immunoassays for IL-17AA, IL-17FF, and IL-17AF. J Immunol Methods. 2010;362(1–2):70–81.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng J. High potency antagonists of the pancreatic glucagon-like peptide-1 receptor. J Biol Chem. 1997;272(34):21201–6.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Huang SM, Zhao H, Lee JI, Reynolds K, Zhang L, Temple R, et al. Therapeutic protein-drug interactions and implications for drug development. Clin Pharmacol Ther. 2010;87(4):497–503.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Wang J, Patel V, Burns D, Laycock J, Pandya K, Tsoi J, et al. Laboratory automation of high-quality and efficient ligand-binding assays for biotherapeutic drug development. Bioanalysis. 2013;5(13):1635–48.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Leung SS, Dreher EA. Automate it: ligand-binding assay productivity in a discovery bioanalytical setting. Bioanalysis. 2013;5(14):1775–82.

    CrossRef  CAS  PubMed  Google Scholar 

  42. Allinson JL, Blick KE, Cohen L, Higton D, Li M. Ask the experts: automation: part I. Bioanalysis. 2013;5(16):1953–62.

    CrossRef  PubMed  Google Scholar 

  43. Shen JX. Regulated bioanalytical laboratory automation: where we came from, where we are and where we are going. Bioanalysis. 2011;3(13):1415–8.

    CrossRef  CAS  PubMed  Google Scholar 

  44. Li M, Chou J, Jing J, Xu H, Costa A, Caputo R, et al. MARS: bringing the automation of small-molecule bioanalytical sample preparations to a new frontier. Bioanalysis. 2012;4(11):1311–26.

    CrossRef  PubMed  Google Scholar 

  45. Li M. Bioanalytical laboratory automation development: why should we and how could we collaborate? Bioanalysis. 2015;7(2):153–5.

    CrossRef  CAS  PubMed  Google Scholar 

  46. Li M. Laboratory automation: letting scientists focus on science. Bioanalysis. 2015;7(14):1699–701.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Li M. Automation in the bioanalytical laboratory: what is the future? Bioanalysis. 2013;5(23):2859–61.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Ho S. Best practices for discovery bioanalysis: balancing data quality and productivity. Bioanalysis. 2014;6(20):2705–8.

    CrossRef  CAS  PubMed  Google Scholar 

  49. Duo J, Dong H, DeSilva B, Zhang YJ. A generic template for automated bioanalytical ligand-binding assays using modular robotic scripts in support of discovery biotherapeutic programs. Bioanalysis. 2013;5(14):1735–50.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Dodge R. Using Tecan GWL command programming to achieve automated LIMS TO LIMS sample analysis on the gyros workstation. BMSIARC Conference 2014.

    Google Scholar 

  51. Burns DT, Danzer K, Townshend A. A tutorial discussion of the use of the terms “robust” and “rugged” and the associated characteristics of “robustness” and “ruggedness” as used in descriptions of analytical procedures. J Assoc Public Anal. 2009;37:40–60.

    Google Scholar 

  52. Viswanathan CT, Bansal S, Booth B, DeStefano AJ, Rose MJ, Sailstad J, et al. Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm Res. 2007;24(10):1962–73.

    CrossRef  CAS  PubMed  Google Scholar 

  53. Stevenson L, Kelley M, Gorovits B, Kingsley C, Myler H, Osterlund K, et al. Large molecule specific assay operation: recommendation for best practices and harmonization from the global bioanalysis consortium harmonization team. AAPS J. 2014;16(1):83–8.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Fast DM, Kelley M, Viswanathan CT, O’Shaughnessy J, King SP, Chaudhary A, et al. Workshop report and follow-up—AAPS workshop on current topics in GLP bioanalysis: assay reproducibility for incurred samples—implications of crystal recommendations. AAPS J. 2009;11(2):238–41.

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sean Crawford for his input in the writing of the DoE section and Lauren Hipelli for editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Mora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Mora, J., Hottenstein, C., DeSilva, B. (2017). Ligand Binding Assays in the Regulated Bioanalytical Laboratory. In: Rocci Jr., M., Lowes, S. (eds) Regulated Bioanalysis: Fundamentals and Practice. AAPS Advances in the Pharmaceutical Sciences Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-54802-9_9

Download citation