Migraine Genetics

  • Antonio M. Persico
  • Marco Lamberti
  • Viktor Farkas
Chapter
Part of the Headache book series (HEAD)

Abstract

The existence of strong genetic underpinnings to migraine has long been suggested by its tendency to recur in families. Over half of migraine patients have a first-degree relative also affected by a similar condition [1–6], with relative risks (RRs) estimated at 4.0 and 1.4 for migraine with aura (MA) and without aura (MO), respectively [5, 6]. MZ twin concordance rates are 1.5–2.0 times higher than those recorded in DZ twins, with heritability estimated at 34–57% (on average 50%) and shared environmental factors explaining a sizable proportion of variance [1–3]. In general, these genetic underpinnings are more frequently represented by rare genetic variants endowed with high penetrance in the case of MA, whereas polygenic mechanisms with gene-environment interactions more frequently underlie MO. Environmental contributors include, among others, female sex hormones, early and recent stress, and sensory hypersensitivity to visual, auditory, and olfactory stimuli [7, 8]; suggestive evidence also points toward weather and climate conditions, electromagnetic fields, smoking, pollution, and molds [7, 8]. Finally, migraine is frequently comorbid with depression, anxiety, ADHD, sleep disorders, epilepsy, and atopic and cardiovascular diseases [9, 10]. These comorbidities can conceivably stem from shared genetic and/or environmental underpinnings to a different extent in different patients [11, 12].

Keywords

Aura Cortical spreading depression GWAS Headache Migraine Trigeminovascular 

Notes

Acknowledgments

A.M.P. is supported through the Italian Ministry for University, Scientific Research and Technology (PRIN n.2006058195 and n.2008BACT54_002), the Italian Ministry of Health (RFPS-2007-5-640174 and RF-2011-02350537), the Fondazione Gaetano e Mafalda Luce (Milan, Italy), and the Innovative Medicines Initiative Joint Undertaking (EU-AIMS, n. 115300). V.F. is supported by Foundation of Research of Pediatric migraine and Headache, Budapest, Hungary.

Conflict of Interest Statement: The authors declare that there is no conflict of interest.

References

  1. 1.
    Mulder EJ, van Baal C, Gaist D, et al. Genetic and environmental influences on migraine: a twin study across six countries. Twin Res. 2003;6:422–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Svensson DA, Larsson B, Waldenlind E, Pedersen NL. Shared rearing environment in migraine: results from twin reared apart and twin reared together. Headache. 2003;43:235–44.CrossRefPubMedGoogle Scholar
  3. 3.
    Cologno D, Pascale AD, Manzoni GC. Familial occurrence of migraine with aura in a population-based study. Headache. 2003;43:231–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Schürks M, Rist PM, Kurth T. Sex hormone receptor gene polymorphisms and migraine: a systematic review and meta-analysis. Cephalalgia. 2010;30:1306–28.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Russel MB, Iselius L, Olesen J. Migraine without aura and migraine with aura are inherited disorders. Cephalalgia. 1996;16:305–9.CrossRefGoogle Scholar
  6. 6.
    Lemos C, Alonso I, Barros J, et al. Assessing risk factors for migraine: differences in gender transmission. PLoS One. 2012;7:e50626.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Friedman DI, De ver Dye T. Migraine and the environment. Headache. 2009;49:941–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Eising E, Datson NA, van den Maagdenberg AMJM, et al. Epigenetic mechanisms in migraine: a promising avenue? BMC Med. 2013;11:26–32.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Diener HC, Kuper M, Kurth T. Migraine-associated risks and comorbidity. J Neurol. 2008;255:1290–301.CrossRefPubMedGoogle Scholar
  10. 10.
    Bellini B, Arruda M, Cescut A, et al. Headache and comorbidity in children and adolescents. J Headache Pain. 2013;14:79–86.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hung CI, Liu CY, Juang YY, et al. The impact of migraine on patients with major depressive disorder. Headache. 2006;46:469–77.CrossRefPubMedGoogle Scholar
  12. 12.
    Tietjen GE, Brandes JL, Digre KB, et al. High prevalence of somatic symptoms and depression in women with disabling chronic headache. Neurology. 2007;68:134–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Persico AM, Verdecchia M, Pinzone V, et al. Migraine genetics: current findings and future lines of research. Neurogenetics. 2015;16(2):77–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Dichgans M, Mayer M, Uttner I, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44:731–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Joutel A, Corpechot C, Ducros A, et al. Notch-3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383:707–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development. Arterioscler Thromb Vasc Biol. 2003;23:543–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Alva JA, Iruela-Arispe ML. Notch signaling in vascular morphogenesis. Curr Opin Hematol. 2004;11:278–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Ishiko A, Shimizu A, Nagata E, et al. Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol. 2006;112:333–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Razvi SS, Davidson R, Bone I, et al. The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry. 2005;76:739–41.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Narayan SK, Gorman G, Kalaria RN, et al. The minimum prevalence of CADASIL in Northeast England. Neurology. 2012;78:1025–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kaufmann P, Engelstad K, Wei Y, et al. Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology. 2011;77:1965–71.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Finsterer J. Inherited mitochondrial disorders. Adv Exp Med Biol. 2012;942:187–213.CrossRefPubMedGoogle Scholar
  23. 23.
    Federico A, Di Donato I, Bianchi S, et al. Hereditary cerebral small vessel diseases: a review. J Neurol Sci. 2012;322:25–30.CrossRefPubMedGoogle Scholar
  24. 24.
    Ophoff RA, DeYoung J, Service SK, et al. Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1-p21.3. Am J Hum Genet. 2001;69:447–53.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bersano A, Debette S, Zanier ER, et al. The genetics of small-vessel disease. Curr Med Chem. 2012;19:4124–41.CrossRefPubMedGoogle Scholar
  26. 26.
    Storimans CW, Van Schooneveld MJ, Oosterhuis JA, et al. A new autosomal dominant vascular retinopathy syndrome. Eur J Ophthalmol. 1991;1:73–8.PubMedGoogle Scholar
  27. 27.
    Terwindt GM, Haan J, Ophoff RA, et al. Clinical and genetic analysis of a large Dutch family with autosomal dominant vascular retinopathy, migraine and Raynaud’s phenomenon. Brain. 1998;121(Pt 2):303–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Jen J, Cohen AH, Yue Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology. 1997;49:1322–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Gould DB, Phalan FC, Breedved GJ, et al. Mutations in COL4A1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308:1167–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Breedved G, de Coo IF, Lequin MH, et al. Novel mutations in three families confirms a major role of COL4A1 in hereditary porencephaly. J Med Genet. 2006;43:490–5.CrossRefGoogle Scholar
  31. 31.
    Van Der Knaap MS, Smit LM, Barkhof F, et al. Neonatal porencephaly and adult stroke related to mutations in collagen IV A1. Ann Neurol. 2006;59:504–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke. 2010;41:e513–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Vahedi K, Massin P, Guichard JP, et al. Hereditary infantile hemiparesis, retinal arteriolar tortuosity, and leukoencephalopathy. Neurology. 2003;60:57–63.CrossRefPubMedGoogle Scholar
  34. 34.
    Ebisawa T. Circadian rhythms in the CNS and peripheral clock disorders: human sleep disorders and clock genes. J Pharmacol Sci. 2007;103:150–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Vanselow K, Vanselow JT, Westermark PO, et al. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 2006;20:2660–72.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brennan KC, Bates EA, Shapiro RE, et al. Casein Kinase I mutations in familial migraine and advanced sleep phase. Sci Transl Med. 2013;5:183ra56, 1–11.Google Scholar
  37. 37.
    Xu Y, Padiath QS, Shapiro RE, et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature. 2005;434:640–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Hansen JM. Familial hemiplegic migraine. Dan Med Bull. 2010;57:B4183.PubMedGoogle Scholar
  39. 39.
    Thomsen LL, Kirchmann M, Bjornsson A, et al. The genetic spectrum of a population-based sample of familial hemiplegic migraine. Brain. 2007;130(Pt 2):346–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Riant F, Ducros A, Ploton C, et al. De novo mutations in ATP1A2 and CACNA1A are frequent in early-onset sporadic hemiplegic migraine. Neurology. 2010;75:967–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Frosk P, Mhanni AA, Rafay MF. SCN1A mutation associated with intractable myoclonic epilepsy and migraine headache. J Child Neurol. 2013;28:389–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Gargus JJ, Tournay A. Novel mutation confirms seizure locus SCN1A is also familial hemiplegic migraine locus FHM3. Pediatr Neurol. 2007;37:407–10.CrossRefPubMedGoogle Scholar
  43. 43.
    O’Roak BJ, Deriziotis P, Lee C, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996;87:543–52.CrossRefPubMedGoogle Scholar
  45. 45.
    Barros J, Ruano L, Domingos J, et al. The prevalence of familial hemiplegic migraine with cerebellar ataxia and spinocerebellar ataxia type 6 in Portugal. Headache. 2014;54:911–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Bürk K, Kaiser FJ, Tennstedt S, et al. A novel missense mutation in CACNA1A evaluated by in silico protein modeling is associated with non-episodic spinocerebellar ataxia with slow progression. Eur J Med Genet. 2014;57:207–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Star TV, Pristay W, Snutch TP. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci U S A. 1991;88:5621–5.CrossRefGoogle Scholar
  48. 48.
    Westenbroek RE, Sakurai T, Elliot EM. Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci. 1995;15:6403–18.PubMedGoogle Scholar
  49. 49.
    Cohen-Kutner M, Nachmanni D, Atlas D. CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release. Channels (Austin). 2010;4:266–77.CrossRefGoogle Scholar
  50. 50.
    Ambrosini A, D’Onofrio M, Grieco G, et al. Familial basilar migraine associated with a new mutation in ATP1A2 gene. Neurology. 2005;65:1826–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Todt U, Dichgans M, Jurkat-Rott K, et al. Rare missense variants in ATP1A2 in families with clustering of common forms of migraine. Hum Mutat. 2005;26:315–21.CrossRefPubMedGoogle Scholar
  52. 52.
    Vanmolkot KR, Babini E, de Vries B, et al. The novel pL1649Q mutation in the SCN1A epilepsy gene associated with familial hemiplegic migraine: genetic and functional studies. Hum Mutat. 2007;28:522.CrossRefPubMedGoogle Scholar
  53. 53.
    Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia. 2010;51:1650–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cestèle S, Scalmani P, Rusconi R, et al. Self-limited hyperexcitability: functional effect of a familial hemiplegic migraine mutation of the Nav1.1 (SCN1A) Na+ channel. J Neurosci. 2008;28:7273–83.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Dale RC, Gardiner A, Antony J, et al. Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol. 2012;54:958–60.CrossRefPubMedGoogle Scholar
  56. 56.
    Suzuki M, Van Paesschen W, Stalmans I, et al. Defective membrane expression of the Na(+)-HCO3(-) cotrasporter NBCe1 is associated with familial migraine. Proc Natl Acad Sci U S A. 2010;107:15963–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jen JC, Wan J, Palos TP, et al. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 2005;65:529–34.CrossRefPubMedGoogle Scholar
  58. 58.
    de Vries B, Mamsa H, Stam AH, et al. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch Neurol. 2009;66:97–101.CrossRefPubMedGoogle Scholar
  59. 59.
    Maher BH, Griffiths LR. Identification of molecular genetic factors that influence migraine. Mol Genet Genomics. 2011;285:433–46.CrossRefPubMedGoogle Scholar
  60. 60.
    Lafrenière RG, Cader MZ, Poulin JF, et al. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med. 2010;43:1157–60.CrossRefGoogle Scholar
  61. 61.
    Lafrenière RG, Rouleau GA. Role of the TRESK two-pore potassium channel. Int J Biochem Cell Biol. 2011;43:1533–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Lafrenière RG, Rouleau GA. Identification of novel genes involved in migraine. Headache. 2012;52:107–10.CrossRefPubMedGoogle Scholar
  63. 63.
    Nyholt DR, Morley KI, Ferreira MA, et al. Genome wide significant linkage to migrainous headache on chromosome 5q21. Am J Hum Genet. 2005;77:500–12.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ligthart L, Nyholt DR, Hottenga JJ, et al. A genome-wide linkage scan provides evidence for both new and previously reported loci influencing common migraine. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1186–95.CrossRefPubMedGoogle Scholar
  65. 65.
    Anttila V, Kallela M, Oswell G, et al. Trait components provide tools to dissect the genetic susceptibility of migraine. Am J Hum Genet. 2006;79:85–99.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Anttila V, Nyholt DR, Kallela M, et al. Consistently replicating locus linked to migraine on 10q22-q23. Am J Hum Genet. 2008;82:1051–63.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Anttila V, Stefansson H, Kallela M, et al. International Headache Genetics Consortium. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet. 2010;42:869–73.Google Scholar
  68. 68.
    Chasman DI, Schürks M, Anttila V, et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet. 2011;43:695–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ligthart L, de Vries B, Smith AV, et al. Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet. 2011;19:901–7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Freilinger T, Anttila V, de Vries B, et al. International Headache Genetics Consortium. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44:777–82.Google Scholar
  71. 71.
    Cox HC, Lea RA, Bellis C, et al. A genome-wide analysis of ‘Bounty’ descendants implicates several novel variants in migraine susceptibility. Neurogenetics. 2012;13:261–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Anttila V, Winsvold BS, Gormley P, et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013;45:912–7.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Nyholt DR, van den Maagdenberg AM. Genome-wide association studies in migraine: current state and route to follow. Curr Opin Neurol. 2016;29(3):302–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48(8):856–66.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain. 2013;154(Suppl):1.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio M. Persico
    • 1
    • 2
  • Marco Lamberti
    • 1
  • Viktor Farkas
    • 3
  1. 1.Child and Adolescent NeuroPsychiatry Unit, “G. Martino” University HospitalUniversity of MessinaMessinaItaly
  2. 2.Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
  3. 3.First Department of PediatricsSemmelweiss UniversityBudapestHungary

Personalised recommendations