Abstract
This paper presents a method for formally representing Computer-Interpretable Guidelines. It allows for combining them with knowledge from several sources to better detect potential interactions within multimorbidity cases, coping with possibly conflicting pieces of evidence coming from clinical studies. The originality of our approach is on the capacity to analyse combinations of more than two recommendations, which is useful, for instance, for polypharmacy interactions cases. We defined general models to express evidence as causation beliefs and designed general rules for detecting interactions (e.g., conflicts, alternatives, etc.) enriched with Linked Open Data (e.g. Drugbank, Sider). In particular we show that Linked Open Data sources enable us to detect (suspected) interactions among multiple drugs due to polypharmacy. We evaluate our approach in a scenario where three different clinical guidelines (Osteoarthritis, Diabetes, and Hypertension) are combined. We demonstrate the capability of this approach for detecting several potential conflicts between the recommendations and find alternatives.
Invited submission as extension of [1].
V. Zamborlini—Funded by CNPq (Brazilian National Council for Scientific and Technological Development) within the Science without Borders programme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
For sake of simplicity we can omit the word ‘type’.
- 7.
For a deeper explanation see [7].
- 8.
Detailed discussion about (non-)deterministic or (non-)intentional event types is out of scope of this work.
- 9.
This approach exclude endless assertions about all the effects an event is not expected to produce since the beliefs are defined in CGs or scientific papers by a community of experts, e.g. cancer is not an effect of a certain drug.
- 10.
Accessible at http://rapgmsbgym.github.io.
- 11.
The Drug and Situation Types are mirrored and mapped to the to the external knowledge sources via owl:sameAs.
- 12.
- 13.
- 14.
- 15.
References
Zamborlini, V., Hoekstra, R., Silveira, M., Pruski, C., Teije, A.: Generalizing the detection of internal and external interactions in clinical guidelines. In: Proceedings of the 9th International Conference on Health Informatics (HEALTHINF2016), Rome, Italy (2016)
Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Informatics 46, 744–763 (2013)
Lohr, K.N.: Rating the strength of scientific evidence: relevance for quality improvement programs. Int. J. Qual. Health Care 16, 9–18 (2003)
Barnett, K., Mercer, S., Norbury, M., Watt, G.: Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. The Lancet (2012)
Guthrie, B., Makubate, B., Hernandez-Santiago, V., Dreischulte, T.: The rising tide of polypharmacy and drug-drug interactions: population database analysis 19952010. BMC Med. 13, 74 (2015)
Zamborlini, V., Hoekstra, R., da Silveira, M., Pruski, C., ten Teije, A., van Harmelen, F.: Inferring recommendation interactions in clinical guidelines: case-studies on multimorbidity. Seman. Web J., Open Acess (2015, accepted)
Zamborlini, V., Silveira, M., Pruski, C., Teije, A., Harmelen, F.: Towards a conceptual model for enhancing reasoning about clinical guidelines. In: Miksch, S., Riaño, D., Teije, A. (eds.) KR4HC 2014. LNCS (LNAI), vol. 8903, pp. 29–44. Springer, Cham (2014). doi:10.1007/978-3-319-13281-5_3
Zamborlini, V., Hoekstra, R., Silveira, M., Pruski, C., Teije, A., Harmelen, F.: A conceptual model for detecting interactions among medical recommendations in clinical guidelines. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 591–606. Springer, Cham (2014). doi:10.1007/978-3-319-13704-9_44
Jafarpour, B.: Ontology merging using semantically-defined merge criteria and owl reasoning services: towards execution-time merging of multiple clinical workflows to handle comorbidity. Ph.D. thesis, Dalhousie University (2013)
Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., MacIejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z.T., Han, B., Zhou, Y., Wishart, D.S.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, 1091–1097 (2014). D1091–7, PubMed ID: 24203711
Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016)
Boyce, R., Collins, C., Horn, J., Kalet, I.: Computing with evidence part I: a drug-mechanism evidence taxonomy oriented toward confidence assignment. J. Biomed. Inform. 42, 979–989 (2009)
Banda, J.M., Kuhn, T., Shah, N.H., Dumontier, M.: Provenance-centered dataset of drug-drug interactions. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 293–300. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6_18
Hoekstra, R., Magliacane, S., Rietveld, L., Vries, G., Wibisono, A., Schlobach, S.: Hubble: linked data hub for clinical decision support. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E., Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 458–462. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46641-4_45
Zamborlini, V., Silveira, M., Pruski, C., Teije, A., Harmelen, F.: Analyzing recommendations interactions in clinical guidelines. In: Holmes, J.H., Bellazzi, R., Sacchi, L., Peek, N. (eds.) AIME 2015. LNCS (LNAI), vol. 9105, pp. 317–326. Springer, Cham (2015). doi:10.1007/978-3-319-19551-3_40
Guizzardi, G., Wagner, G., Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.: Towards ontological foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41924-9_27
ten Teije, A., Miksch, S., Lucas, P. (eds.): Computer-Based Medical Guidelines and Protocols: A Primer and Current Trends. Technology and Informatics, vol. 139 (2008)
Ammenwerth, E., Schnell-Inderst, P., Machan, C., Siebert, U.: The effect of electronic prescribing on medication errors and adverse drug events: a systematic review. J. Am. Med. Inform. Assoc. 15, 585–600 (2008)
López-Vallverdú, J.A., Riaño, D., Collado, A.: Rule-based combination of comorbid treatments for chronic diseases applied to hypertension, diabetes mellitus and heart failure. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., Teije, A. (eds.) KR4HC/ProHealth -2012. LNCS (LNAI), vol. 7738, pp. 30–41. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36438-9_2
Wilk, S., Michalowski, M., Tan, X., Michalowski, W.: Using first-order logic to represent clinical practice guidelines and to mitigate adverse interactions. In: Miksch, S., Riaño, D., Teije, A. (eds.) KR4HC 2014. LNCS (LNAI), vol. 8903, pp. 45–61. Springer, Cham (2014). doi:10.1007/978-3-319-13281-5_4
Piovesan, L., Molino, G., Terenziani, P.: An ontological knowledge and multiple abstraction level decision support system in healthcare. Decis. Anal. 1, 8 (2014)
Bonacin, R., Pruski, C., Da Silveira, M.: Architecture and services for formalising and evaluating care actions from computer-interpretable guidelines. IJMEI Int. J. Med. Eng. Inform. 5, 253–268 (2013)
de Waard, A., Shum, S.B., Carusi, A., Park, J., Samwald, M., Sándor, Á.: Hypotheses, evidence and relationships: the hyper approach for representing scientific knowledge claims. In: Proceedings of the 8th ISWC, Workshop on Semantic Web Applications in Scientific Discourse. Springer, Berlin (2009)
Hoekstra, R., de Waard, A., Vdovjak, R.: Annotating evidence based clinical guidelines - a lightweight ontology. In: Paschke, A., Burger, A., Romano, P., Marshall, M.S., Splendiani, A. (eds.) Proceedings of the 5th International Workshop on Semantic Web Applications and Tools for Life Sciences, Paris, France, 28–30 November 2012. CEUR Workshop Proceedings, vol. 952 (2012). CEUR-WS.org
Huang, Z., Teije, A., Harmelen, F., Aït-Mokhtar, S.: Semantic representation of evidence-based clinical guidelines. In: Miksch, S., Riaño, D., Teije, A. (eds.) KR4HC 2014. LNCS (LNAI), vol. 8903, pp. 78–94. Springer, Cham (2014). doi:10.1007/978-3-319-13281-5_6
Mons, B., van Haagen, H., Chichester, C., Hoen, P.B., den Dunnen, J., van Ommen, G., van Mulligen, E., Singh, B., Hooft, R., Roos, M., Hammond, J., Kiesel, B., Giardine, B., Velterop, J., Groth, P., Schultes, E.: The value of data. Nat. Genet. 43, 281–283 (2011)
Acknowledgments
We would like to thank colleagues from NEMO-UFES/Brazil for fruitful discussions about transitions, causation beliefs and regulations, and also prof. md. Saulo Bortolon for the nice discussions about medical domain; Jan Wielemaker and Wouter Beek (VU Amsterdam) for helping with SWI-Prolog implementation; Wytze Vliestra (Erasmus Rotterdam) for fruitful discussions about the biomedical domain; and Paul Groth (Elsevier) for fruitful discussions about the potential generality of the model and the use of nanopublications. The first author is funded by CNPq (Brazilian National Council for Scientific and Technological Development) within the program Science without Borders. This work was partially funded by the Dutch National Programme COMMIT.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zamborlini, V., Hoekstra, R., da Silveira, M., Pruski, C., ten Teije, A., van Harmelen, F. (2017). Generalizing the Detection of Clinical Guideline Interactions Enhanced with LOD. In: Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2016. Communications in Computer and Information Science, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-319-54717-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-54717-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54716-9
Online ISBN: 978-3-319-54717-6
eBook Packages: Computer ScienceComputer Science (R0)