Skip to main content

Online Simulation of Mechatronic Neural Interface Systems: Two Case-Studies

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 690))

Abstract

Neural interface systems (NIS) are widely used in rehabilitation and prosthetics. These systems usually involve robots, such as robotic exoskeletons or mechatronic arms, as terminal devices. We propose a methodology to assess the feasibility of implementing these kind of neural interfaces by means of an online kinematic simulation of the robot. It allows the researcher or developer to make tests and improve the design of the mechatronic devices when they have not been built yet or are not available. Moreover, it may be used in biofeedback applications for rehabilitation. The simulation makes use of the CAD model of the robot, its Denavit-Hartenberg parameters, and biosignals recorded from a human being. The proposed methodology was tested using surface electromyography (sEMG) signals from the upper limb of a 25-year-old subject to control a kinematic simulation of a KUKA KR6 robot.

It was also used in the design process of an actual lower limb rehabilitation system being developed in our laboratories. The 3D computational simulation of this robot was successfully controlled by means of sEMG signals acquired from the lower limb of a 26-year-old healthy subject. Both real-time and prerecorded signals were used. The tests provided researchers feedback in the design process, looking forward to new iterations in the detailed design and construction phases of the project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asghari Oskoei, M., Hu, H.: Myoelectric control systems-a survey. Biomed. Signal Process. Control 2(4), 275–294 (2007). doi:10.1016/j.bspc.2007.07.009

    Article  Google Scholar 

  2. Corke, P.: Robot arm kinematics. In: Corke, P. (ed.) Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer Tracts in Advanced Robotics, vol. 73, pp. 137–170. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Corke, P.I.: A simple and systematic approach to assigning Denavit-Hartenberg parameters. IEEE Trans. Rob. 23(3), 590–594 (2007). doi:10.1109/TRO.2007.896765

    Article  Google Scholar 

  4. Correa, J.C., Ramirez, J.A., Taborda, E.A., Cock, J.A., Gómez, M.A., Escobar, G.A.: Implementation of a laboratory for the study of robot manipulators. In: Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition, pp. 23–30 (2010)

    Google Scholar 

  5. Crane, C.D., Duffy, J.: Kinematic Analysis of Robot Manipulators. Cambridge University Press, New York (1998)

    Book  MATH  Google Scholar 

  6. Delis, A.L., Carvalho J.L.A., Rocha, A.F.: Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses (2006). Self Organizing Maps - Applications and Novel Algorithm Design, pp. 401–424 (1977). http://cdn.intechopen.com/pdfs/13310/InTech-Myoelectric_knee_angle_estimation_algorithms_for_control_of_active_transfemoral_leg_prostheses.pdf

  7. Eurostat: Disability statistics - prevalence and demographics (2014). http://ec.europa.eu/eurostat/statistics-explained/index.php/Disability_statistics_-_prevalence_and_demographics

  8. Florimond, V.: Basics of Surface Electromyography Applied to Physical Rehabilitation and Biomechanics, vol. 1, pp. 1–50, March 2010

    Google Scholar 

  9. Fu, K.S., Gonzalez, R.C., Lee, C.S.: Robotics: Control, Sensing, Vision and Intelligence. McGraw-Hill, New York (1987)

    Google Scholar 

  10. Garcia Quiroz, F., Villa Moreno, A., Castano Jaramillo, P.: Interfaces neuronales y sistemas maquina-cerebro: fundamentos y aplicaciones. Revision. Revista Ingenieria Biomedica (1), 14–22 (2007). http://revistabme.eia.edu.co/numeros/1/art/InterfacesNeuronales.pdf

  11. Hatsopoulos, N., Donoghue, J.: The science of neural interface systems. Ann. Rev. Neurosci. 32, 249–266 (2009). doi:10.1146/annurev.neuro.051508.135241. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921719/

    Article  Google Scholar 

  12. Hon Wah, W.: Introduction to STL format (1999). http://download.novedge.com/Brands/FPS/Documents/Introduction_To_STL_File_Format.pdf

  13. Kiguchi, K., Tanaka, T., Fukuda, T.: Neuro-fuzzy control of a robotic exoskeleton with EMG signals. IEEE Trans. Fuzzy Syst. 12(4), 481–490 (2004). doi:10.1109/TFUZZ.2004.832525

    Article  Google Scholar 

  14. Kyrylova, A., Desplenter, T., Escoto, A., Chinchalkar, S., Trejos, A.L.: Simplified EMG-driven model for active-assisted therapy. In: IROS 2014 Workshop on Rehabilitation and Assistive Robotics: Bridging the Gap Between Clinicians and Roboticists, p. 6 (2014). http://users.eecs.northwestern.edu/~argall/14rar/submissions/kyrylova.pdf

  15. Lasso, I.L., Masso, M., Vivas, O.A.: Exoesqueleto para reeducacion muscular en pacientes con IMOC tipodiplejia espastica moderada, pp. 1–88 (2010). http://www.unicauca.edu.co/deic/Documentos/Monograf%EDa%20exoesqueleto.pdf

  16. Lenzi, T., Rossi, S.M.M., Vitiello, N., Carrozza, M.C.: Intention-based EMG control for powered exoskeletons. IEEE Trans. Biomed. Eng. 59(8), 2180–2190 (2012). doi:10.1109/TBME.2012.2198821

    Article  Google Scholar 

  17. Lucas, M.F., Gaufriau, A., Pascual, S., Doncarli, C., Farina, D.: Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization. Biomed. Signal Process. Control 3(2), 169–174 (2008). doi:10.1016/j.bspc.2007.09.002

    Article  Google Scholar 

  18. Merletti, R.: Standards for reporting EMG data (1999). doi:10.1016/S1050-6411(97)90001-8, http://www.isek.org/wp-content/uploads/2015/05/Standards-for-Reporting-EMG-Data.pdf

  19. Merletti, R., Parker, P.A.: Electromyography: Physiology, Engineering, and Non-Invasive Applications. Wiley, Hoboken (2004)

    Book  Google Scholar 

  20. Mon, Y., Al-Jumaily, A.: Estimation of upper limb joint angle using surface EMG signal. Int. J. Adv. Robot. Syst. 1 (2013). doi:10.5772/56717, http://www.intechopen.com/journals/international_journal_of_advanced_robotic_systems/estimation-of-upper-limb-joint-angle-using-surface-emg-signal

  21. National Limb Loss Center Information: Amputation statistics by cause. Limb loss in the United States (2008). http://www.amputee-coalition.org/limb-loss-resource-center/resources-by-topic/limb-loss-statistics/limb-loss-statistics/

  22. Pan, D., Gao, F., Miao, Y., Cao, R.: Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms. Adv. Eng. Softw. 79, 36–46 (2015). doi:10.1016/j.advengsoft.2014.09.005

    Article  Google Scholar 

  23. Patiño, J.G., Bravo, E.E., Perez, J.J., Perez, V.: Lower limb rehabilitation system controlled by robotics, electromyography surface and functional electrical stimulation. In: Pan American Health Care Exchanges, PAHCE 2002 (2013). doi:10.1109/PAHCE.2013.6568341, 6257

  24. Revilla, L.M., Delis, A.L., Olaya, A.F.R.: Towards a method to detect movement intention. In: Pan American Health Care Exchanges, PAHCE, pp. 1–6 (2013). doi:10.1109/PAHCE.2013.6568259

  25. Ruiz, A.F., Rocon, E., Forner-Cordero, A.: Exoskeleton-based robotic platform applied in biomechanical modelling of the human upper limb. Appl. Bionics Biomech. 6(2), 205–216 (2009). doi:10.1080/11762320802697380

    Article  Google Scholar 

  26. The Seniam Project: SENIAM (2015). http://www.seniam.org

  27. Tsai, L.W.: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  28. Wojtczak, P., Amaral, T.G., Dias, O.P., Wolczowski, A., Kurzynski, M.: Hand movement recognition based on biosignal analysis. Eng. Appl. Artif. Intell. 22(4–5), 608–615 (2009). doi:10.1016/j.engappai.2008.12.004

  29. World Health Organization: World Report on Disability (2011). http://www.who.int/disabilities/world_report/2011/report.pdf

  30. Yepes, J.C., Yepes, J.J., Martinez, J.R., Perez, V.Z.: Implementation of an Android based teleoperation application for controlling a KUKA-KR6 robot by using sensor fusion. In: Pan American Health Care Exchanges, PAHCE (2013). doi:10.1109/PAHCE.2013.6568286

  31. Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89(3), 422–429 (2008). doi:10.1016/j.apmr.2007.11.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cristian D. Martínez for the design and development of the Low-Cost sEMG signal acquisition device. We also would like to thank the physiotherapist Vanessa Montoya for her advisory with the rehabilitation exercises, Álvaro J. Saldarriaga for his support simulating the real-time sEMG signals, and Andrs Orozco-Duque for his support in the acquisition of sEMG signals.

Finally, the authors express gratitude to the Departamento Administrativo de Ciencia, Tecnología e InnovaciÓn Colciencias, from Colombia, for their grant number 121071149736.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Bustamante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bustamante, S., Yepes, J.C., Pérez, V.Z., Correa, J.C., Betancur, M.J. (2017). Online Simulation of Mechatronic Neural Interface Systems: Two Case-Studies. In: Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2016. Communications in Computer and Information Science, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-319-54717-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54717-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54716-9

  • Online ISBN: 978-3-319-54717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics